
1 INTRODUCTION 

Design of modern ships introduces new complex 
structural solutions that must follow the increasing 
demand for more reliable and safe products. Innova-
tion has become necessity which ensures survival in 
the market, and it requires improvements of multiple 
conflicting ship attributes. However, available time 
does not follow the increasing complexity of design 
procedure, thus more advanced support systems are 
required that can assist designers. This is conve-
niently performed through the optimization process, 
but with obstacles on the way. 

Early design stage lacks precise information on 
e.g. loading or structural details, while the bounds of 
some requirements, such as e.g. weight, vertical cen-
tre of gravity, nominal stress levels or length of weld 
meters are not precisely defined. In general it is then 
useful to venture into analysing correlation between 
them and investigate their sensitivity for the consid-
ered structural arrangement.  

Complex ship structures involve large number of 
variables and even larger number of constraints. Va-
riables are in structural optimization regularly dis-
crete, whether they represent element size, material 
type, stiffener spacing etc. Constraints are non-linear 
and non-convex typically involving yielding and 

buckling of structural elements. These reasons con-
fine the choice of possible optimization algorithms 
to those that do not require gradient calculation of 
constraints and objective functions. Evolutionary al-
gorithms have shown capability to handle such prob-
lems and provide sufficient benefits for the structure. 
Their prominent representative, genetic algorithm 
(GA), is used in this study. Several applications have 
shown that GA is a successful tool for practical 
problems in ship structural design and optimization, 
see e.g. Nobukawa & Zhou (1996), Klanac (2004), 
Romanoff and Klanac (2007), Ehlers et al. (2007), 
Klanac and Jelovica (2008). 

Genetic algorithm operates in the space of design 
objectives, by having multiple design alternatives at 
hand when deciding where to continue the search 
from generation to generation. This number of avail-
able solutions is known as a population size and 
should grow with the number of considered va-
riables. Literature suggests using population size in 
range from 50 to 500; see Osyczka (2002), Deb 
(2001). This lengthens the optimization process even 
for a simple engineering problem, so that the number 
of generated and evaluated designs before reaching 
the optima can be more than several thousands. 
Clearly, this can be rather costly when optimizing 
large ship structures, especially if Finite Element 
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Method is applied for structural assessment. In any 
case, optimization should be short, and if it is time-
consuming, it is often, for convenience, stopped 
prematurely, immediately after noticing some im-
provements in objective values, and without attain-
ing their optimal values. Making relevant conclu-
sions based on such results can be misleading and 
costly in the later stages. 

Several conflicting objectives that are typically 
interesting for ship structural optimization, e.g. 
weight and safety, form a distinctive Pareto frontier 
which gains in size with problem. Conventional and 
widespread multi-objective GAs, e.g. NSGA-II (Deb 
et al. 2002) or SPEA2 (Zitzler et al. 2002), attempt 
to attain whole Pareto frontier in one run, so that in 
the very end all Pareto optimal designs are attained. 
Designer then has a possibility to consider many al-
ternatives that possess different objective values 
which are then selected based on some preference. 
But as shown in this paper limited population size 
restricts such algorithms to fully reach extreme parts 
of Pareto frontier. Those extreme locations (for 
which some objective is at minimum/maximum, re-
gardless of the others) contain possibly innovative 
design principles that can provide new knowledge 
on possibilities of the structure. Recent study by 
Klanac et al. (2008) showed that increased crash-
worthiness of a ship side can be accomplished with-
out significant sacrifice in weight, contrary to tradi-
tional belief. Such conclusion was possible by 
comparing the edges of the Pareto frontier. 

In this study we consider a way to avoid unneces-
sary increase in number of evaluated designs to 
reach desired parts of a Pareto frontier. Simply said, 
sometimes the whole frontier is not required to be 
contained in the final population. Optimization can 
consist of several parts, each exploring a different 
part of the frontier. User knows his preference to-
ward objectives included in the optimization. Pro-
gress can then be monitored and re-directed if con-
sidered appropriate, for example in the case of non-
satisfactory results or simply different aspect of the 
structure wants to be known. Alternatives are then 
moving along the frontier towards the instructed di-
rection. This is based on the assumption that Pareto 
optimal solutions predominantly share common 
variable values, see Deb & Shrinivasan (2006), so 
that the transition along the Pareto frontier should 
not require significant changes in the design and 
should be quick. To allow this manipulation, optimi-
zation progress must be monitored in order to con-
clude on the proper moment for changing the direc-
tion of the search. 

To show the benefits of this approach we use a 
simple GA called VOP, and compare it with NSGA-
II, a recognized algorithm that possesses several ad-
vanced features. VOP optimizes both constraints and 
objectives by using the vectorization principle. 
NSGA-II concurrently optimizes all the objectives 

with equal importance and works by utilising exist-
ing solutions in the front. It has difficulties to oper-
ate with single-objective optimization case to suffi-
cient extent as there is simply no frontier then and it 
recombines the dominated alternatives in the popula-
tion for the same purpose. 

To demonstrate this comparison, a structure of a 
40 000 DWT and 180m long chemical tanker will be 
optimized for two objectives: minima of weight and 
maximum of adequacy of deck structure. 

In the continuation, we will use the term ‘non-
dominated frontier’ instead of the Pareto frontier for 
the results we obtain, since the evolutionary algo-
rithms strive to it for real-world engineering prob-
lems, but reach only certain designs which, when fil-
tered, form non-dominated front. 

In the following chapter we revisit theory behind 
the proposed approach, provide arguments for va-
lidity and show how re-formulated optimization 
statement can be utilized. Chapter 3 describes the 
VOP algorithm. Chapter 4 compares the optimiza-
tion of the tanker problem by VOP and NSGA-II. 
Last two chapters discuss the findings and conclude 
the paper. 

2 GUIDING MULTI-OBJECTIVE 
OPTIMIZATION 

The original multi-objective structural optimization 
problem of M objectives and J constraints can be 
formalized with: 
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where we search for design alternatives x in the total 
design space X  confined within variable bounds. 
Goal is to find such x that minimizes the objectives 
while satisfying all the imposed constraints. If con-
straints are satisfied, design is called feasible and be-
longs to a feasible set Ω̂  

{ }| ( ) 0 .= ∈ ≥x g xΩ X  (2) 

The solution of Eq. (1) is a Pareto optimal alter-
native ∗x  which is non-dominated by other feasible 
alternatives, i.e. there is no alternative better than ∗x  
in the objective space Y  (whose feasible part is de-
noted with ΩY ). Such alternative represents then a 
rational choice and it belongs to a set of Pareto op-
tima Ω̂ , called also the Pareto frontier  and it is de-
fined as: 
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2.1 Concurrent-search multi-objective optimization 

Standard concurrent-search multi-objective GAs 
seek the whole Pareto frontier in a single optimiza-
tion run, requiring large population size to store all 



the encountered non-dominated solutions. Their 
working principle is based on recombination of such 
designs to yield new and better ones, thus their con-
vergence is threatened when population size is not 
adequate. Progress direction of such optimizers in 
objective space can be seen in Figure 1 for the case 
of two objectives. Initial population spreads into 
multiple ‘streams’ where each progresses to differ-
ent parts of the non-dominated frontier. Direction of 
advancement is pre-defined by non-domination con-
cept, and the algorithm is intended to discover even 
the outermost designs in the frontier. If the results 
are not satisfactory enough, one can only tediously 
run the algorithm further, hoping to reach improve-
ments in particular objective without a possibility to 
affect on the process. 
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Figure 1. Standard concurrent approach to GA-based multi-
objective optimization, shown in the bi-objective case (first ob-
jective to be minimized and second to be maximized) 

2.2 Guided search approach 

In this approach only a part of the Pareto frontier is 
searched based on the instructed direction. To allow 
control over this direction, specific manipulative 
weighting factors are applied. Before such manipula-
tion can take place, problem statement in Eq. (1) is 
re-defined into vectorized form following Klanac & 
Jelovica (2008): 
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where constraints ( )jg x  are now treated as addition-
al objectives ( ) ( ){ }1f ,..., fM M J+ +x x , after being con-
verted with the Heaviside function, given as 
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Control over a particular objective is gained by 
multiplication of its normalized value within one GA 
population with the weighting factor kw : 
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where normalization of objective f k  for design i is 
linearly performed using 
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Increased weighting factor leads to stronger mi-
nimization of corresponding objective and vice ver-
sa. For convenience, constraints can be set to share 
the same weighting factor. Figure 2a and b show the 
principle of guided search for two different direc-
tions of search. Guided search is divided in two 
stages, first to reach the frontier, and second to gen-
erate non-dominated designs, exploring thus the pos-
sibilities of the optimized structural arrangement. 
Weighting factors are altered freely by the user, in 
any manner and whenever desired. But the manipu-
lation should be based on heuristics and not on ran-
dom choice.  

The basic idea of weight factor manipulation is to 
direct, or guide the ‘cloud of alternatives’ in search 
during the optimization process which would ‘leave 
behind’ a trail of ‘good’ alternatives. 
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Figure 2. Two proposed routes of the search direction  

 
Deb and Srinivasan (2006) indicate that the Pareto 
optimal design alternatives of one system possess 
many commonalities. If this is considered to apply 
for our problem, Pareto optima obtained in the first 



phase would share then most of the variable values 
with the Pareto optima obtained in the later phase(s) 
of optimization. Decomposing, therefore, the overall 
optimization problem as proposed should not nega-
tively affect on the possibility to generate Pareto op-
tima. On the contrary, it should affect positively, 
since a multi-objective GA would perform then a 
lesser amount of variable changes to generate Pareto 
frontier than if optimization would have been done 
concurrently. 

3 VOP – A GA FOR GUIDED SEARCH 

To guide the search in multi-objective optimiza-
tion of ship structures, we employ a GA called VOP 
(Klanac and Jelovica 2007, 2008, Klanac et al. 
2008a, 2008b, Jelovica 2008). VOP is a binary 
coded algorithm consisting of: a) a fitness calculator, 
b) the weighted roulette wheel selector operating on 
the basis of computed fitness values, and c) a sub-
routine executing the single-point cross-over with a 
probability of pC and the bit-wise mutation with a 
probability of pM. These are standard operators and 
are, except for the fitness calculator, elaborated in 
Jelovica (2008), Klanac and Jelovica (2008c). 

VOP’s fitness function is defined as: 

( ) ( ) ( )( )d( , )

1 , max d , d ,
i

i

i i iϕ
∈

=   − X

x

x
x x x  (8) 

where the design’s distance ( )d ,ix from the origin of 
normalized objective space is obtained as: 
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Minimization of the distance ( )d ,ix replaces the 
problem in (6).. Definition of the weighting factors 
w is elaborated in the actual example that follows. 

4 OPTIMIZATION OF A TANKER STRUCTURE 

Guided search for optimal solutions is examined 
on the 40 000 DWT and 180m long chemical 
tanker’s midship section. Its main frame longitudinal 
elements are optimized for the smallest allowed 
scantlings, while keeping the topology of the struc-
ture unchanged. The tanker’s arrangement, as seen 
in Figure 3, is characterized with two internal longi-
tudinal cofferdams bounded with double sides and 
double bottom structure. The tank’s plating is built 
from duplex steel to resist the aggressive chemicals 
which are transported and is the only part of the 
structure with yield strength of 460 MPa. For the 
remaining structure, 355 MPa steel is used. 
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Figure 3. Half of the main frame section of a considered tanker 
and scantlings of the transverse structures (underlined). 

4.1 Variables 

The structure of one half of the ship’s main frame 
is divided into 47 longitudinal strakes characterized 
by plate thickness, stiffener size and number, ma-
terial type and, additionally, size of transversal ele-
ments. Former two are varied in this study while the 
later three are kept constant. Thus two variables are 
considered per each strake, so the optimization prob-
lem consists in total of 94 variables. Number of 
stiffeners per each strake is depicted in Figure 3 to-
gether with scantlings of the transversal structure. 
Considered variable values are discrete, having the 
step for the plates of 1 mm, a value in general ap-
propriate for early design stage. Plate thicknesses in 
double bottom and double side structure are assumed 
to be available from 8 to 23mm, except of stringers 
whose range is the same as for longitudinal bulkhead 
and the deck, 5 to 20mm. Stiffener sizes are taken as 
standard holland profiles; see Rukki (2008). 

4.2 Structural model and constraints 

The midship section is assumed to stretch be-
tween L/4 and 3L/4 cross-sections, without the 
change in scantlings. It is subjected to the normal 
service loads, those being the hull girder loads, the 
cargo loads and the lateral hydrostatic loads, while 
ballast tanks are assumed to be empty. Pressure 
loads are calculated from liquid density indicated in 
Figure 3, while global loads are shown in Table 1. 

 
 
 
 
 
 



Table 1. Wave loads acting on a ship. 
Loading condition Magnitude Location 
Sagging   
  Vertical bending moment 2 452 000 kNm L/4 
  Vertical shear force 74 880 kN L/2 
Hogging   
  Vertical bending moment 2 932 000 kNm L/4 
  Vertical shear force 72 960 kN L/2 

 
The response under the hull girder loads is calcu-

lated applying the numerical Coupled Beam method 
of Naar et al. (2005). On top of that is added the re-
sponse of the panel under the cargo and hydrostatic 
loads, calculated with uniformly loaded simple 
beam. 

Each strake is checked for eight failure con-
straints concerning plate yield and buckling, stiff-
ener yield, lateral and torsional buckling, stiffener’s 
web and flange buckling and crossing-over. These 
criteria are taken from DNV (2005), Hughes (1988) 
and Hughes et al. (2004). The last constraint is used 
to ensure controlled panel collapse due to extensive 
in-plane loading, where plating between stiffeners 
should fail first; see Hughes et al. (2004). Physically 
this means that the panel is not allowed to consist of 
thick plate and weak stiffening, and the stiffener size 
has to rise with plate thickness. However, in this 
study the cross-over constraint is activated only 
when stresses in stiffeners and plates exceed 2/3 of 
their buckling or yield strength, since it is pointless 
to consider controlled collapse if the collapse is 
unlikely to occur. Altogether 376 failure criteria are 
calculated for each loading condition, which raises 
their total number to 1504. They are transformed 
into adequacies, effectively describing an optimiza-
tion constraint. Adequacy is considered as a non-
linear normalization function between the structural 
capacity of some structural element j, ( )a j x , and a 
loading demand acting on it, ( )b j x , as proposed in 
Hughes et al. (1980): 
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4.3 Objectives 

Two objectives are considered in this study: 
minimize the total weight of hull steel (abbreviated 
as HULL) and maximize the adequacy of deck 
strakes (abbreviated as ADEQUACY). Minimizing 
the weight would increase the payload capacity and 
to certain extent provide cost savings. By introduc-
ing the latter objective, the goal is to explore the 
needed trade-offs when increasing the safety of 
some part of the structure. In this case this is the 
safety of deck structures which are according to ex-
periences prone to failures, e.g. buckling or fatigue. 
To simplify the process, all the adequacies of the 
deck panels can be summed into one function which 

is in the end treated as the objective. The validity of 
such an approach is shown in Koski & Silvenoinen 
(1987). 

The total weight of the hull is calculated by ex-
tending the obtained cross-sectional weight for the 
whole length of the ship, on top of which the weight 
of web frames of 21.4t each 3.56m is added. 

Maximization of deck adequacies also positively 
influences on the feasibility of design alternatives. 
Although treated as the objective, they are also the 
constraints which, in case of negative value, receive 
double penalization: first they deteriorate the dis-
tance function in(9), coming from their transforma-
tion using (5) and second, their negative values de-
crease the sum that is meant to be maximized. This 
will then lead to the strong penalization of the alter-
natives with large infeasibility, while those with 
smaller infeasibility will become preferred, again 
leading to the increase in safety. If on the other 
hand, the adequacy of some alternative is positive, 
its value as vectorized constraint will now be zero, 
while as objective it will remain positive, and the al-
ternative can be freely maximized. 

If HULL is presented on abscise and ADEQUA-
CY on ordinate in the objective space on Figure 2, 
one can expect similar location and shape of the Pa-
reto frontier in the tanker case. 

4.4 Optimization using VOP: a guided search 

The optimization is carried out with a population 
of 60 design alternatives. This is significantly 
smaller than recommended in the literature, but ac-
counting for overall optimization time it is consid-
ered sufficient, based on some preliminary results of 
weight minimization for the same case reported in 
Klanac et al. (2008). GA parameters are kept con-
stant during the optimization: crossover probability 
is set to 0.8, while the mutation probability is 0.003. 
Both values are set based on the literature (Deb 
2001) and previous experiences of the case (Klanac 
et al. 2008). 

Two optimization runs are performed, each fol-
lowing a different search direction. The intention is 
to see the influence of search path on the non-
dominated frontier obtained in the objective space. 
Initially we decide to start the first run with only 
HULL minimization and optimize for ADEQUACY 
afterwards. We name this search direction ‘Strategy 
H-A’ accounting for the sequence of objective con-
sideration. The second run takes opposite path be-
tween the two objectives and is abbreviated as 
‘Strategy A-H’. In fact, these two strategies corre-
spond to the two example routes in Chapter 2, first 
one seen in Figure 2a and the later in Figure 2b. 

To prevent any bias towards particular objective, 
both optimization runs are initiated with the same 
randomly generated population of design alterna-
tives. Each strategy in the Stage 1 performs single-



objective optimization to reach the different edge of 
non-dominated frontier between HULL and ADE-
QUACY. Their weighting factors are accordingly set 
to emphasize improvements only in desired objec-
tive, as seen inTable 2. Reference value of the 
weighting factor is 32.646 10−⋅ , obtained from the 
fraction ( )1 M J+ , where M is taken as 2 and J 
equals to 376. Other weighting factors in the con-
tinuation are scaled relative to this value. 

Stage 1 of the Strategy H-A is run until the point 
where the improvement rate becomes small, being 
the 1028th generation in this case, as seen inFigure 4. 
Assuming now that the further mass reductions will 
not be significant and that the ‘light’ alternatives 
have attained predominantly optimal variable values, 
Stage 2 is initiated by adding the ADEQUACY 
maximization to the minimization of HULL in order 
to generate the non-dominated frontier between 
them. To accomplish this, relative weighting factor 
of ADEQUACY is changed from 0 to 1, being now 
the same as for HULL. Thus the interest has moved 
to the ‘middle’ of the frontier, and the algorithm re-
sponds by starting to improve the ADEQUACY at 
the expense of the HULL; compare Figure 4 and 
Figure 5. Progress is monitored, and in the 1293th 
generation the interest is additionally moved towards 
the second objective to explore the frontier further. 
Optimization is stopped after 1500 generations, 
when it become obvious that current HULL values, 
nearing 8500t, are too high to even be considered as 
possible solutions in reality. ADEQUACY was in-
creased from 12.3 to 18.8 which was declared suffi-
cient. 

Note that the second objective can theoretically 
take value from 0 to 32, consisting from four strakes 
having 8 constraints. But in order to have constraint 
value equal to one, stress in corresponding member 
should be zero, so obviously such a case cannot ex-
ist. 

 
 

Table 2. Relative value of the weighting factors during the op-
timization for the two search directions (given values are ob-
tained by fraction wOBJECTIVE/wCONSTRAINT) 
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Stage Generation wHULL wADEQUACY wCONSTR 

1 1 1 0 1 
2 1028 1 1 1 
 1293 0.5 1 1 

S
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Stage Generation wHULL wADEQUACY wCONSTR 

1 1 0 1 1 
2 262 1 1 1 
 941 1 0.5 1 
 1215 1 0.3 1 

 
Strategy A-H follows the same logic when reach-

ing and exploring the non-dominated frontier, but it 
starts from the opposite direction, firstly searching 
for the maximum of ADEQUACY and in Stage 2 at-
taining the other edge of the frontier. The adjust-
ments in the weighting factors during this optimiza-
tion are presented in Table 2, with each leading the 
solutions to another part of the frontier. Initial in-
crease in ADEQUACY is continued until generation 
262 where certain ‘plateau’ is visible in Figure 5. 
Assuming no significant improvement in ADE-
QUACY is possible after that point, HULL is in-
cluded in the search to attain the needed trade-offs. 
This leads to significant decrease of hull steel weight 
while retaining relatively sound values of ADE-
QUACY, see Figure 4 and Figure 5. What differs 
this strategy from the previous one is much higher 
number of variables that must be altered in order to 
come from maximal ADEQUACY design to mini-
mal HULL solution. Also, we are in this optimiza-
tion case more interested in reaching low hull steel 
weight, thus the algorithm is for Strategy A-H faced 
with demand to gain both extremes of the frontier. 
Therefore, the optimization is not stopped as in the 
Strategy H-A, but has to rapidly come from one end 
to the other. Optimization was stopped when meet-
ing the stopping criterion of 1500 evaluated genera-
tions. 
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Figure 4. Progress of HULL optimization for VOP and NSGA-II, showing generation’s best design 
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Figure 5. Progress of ADEQUACY optimization for VOP and NSGA-II, showing generation’s best design 

 
 

4.5 Comparison with NSGA-II 

Binary coded version of NSGA-II (Deb et al. 
2002) is applied to compare the results from the 
‘guided search’ optimization described previously.  

NSGA-II is characterized with: 
− an elitism concept that ensures preservation of 

non-dominated solutions encountered from the 
beginning of the optimization run, 

− ranking the solutions in the population according 
to non-dominated frontier in which it belongs to, 

− giving advantage to solutions that belong to less 
crowded part of the objective space, 

− constraint-domination which prefers any feasible 
solutions over the infeasible, or between two in-
feasible designs selects the one with less sum of 
violated constraints. 
Optimization with NSGA-II is initiated using the 

same random population as VOP in Stage 1. The 
same crossover and mutation probabilities apply 
also. In difference to VOP, both HULL and ADE-
QUACY are considered from the beginning, and op-
timization is run conventionally for the same amount 
of generations. Optimization history for each objec-
tive is shown in Figure 4 and Figure 5.  

5 DISCUSSION 

Figure 6 depicts the essential comparison between 
the results of optimization performed with the 
‘guided search’ approach, utilizing VOP, and with 
the standard multi-objective approach, utilizing 
NSGA-II. Minimizing solely HULL in the first stage 
of Strategy H-A, VOP managed to attain design with 
the hull weight of 7312t, 330t lower than with 
NSGA-II; see Table 3 for the alternatives located in 
the edges of the frontier, marked with ‘**’ to sim-

plify the notation. Continuing the optimization with 
the second stage, valuable trade-offs between the 
two objectives are created up to the point where the 
further increase in HULL is inadequate. 

It can be clearly seen in Figure 6 that the Strategy 
A-H performed worse. This confirms the suspicion 
that changing too many variables can be difficult for 
the optimizer. All 94 variables had to be altered here 
in the Stage 2, while in the previous strategy effec-
tively only 8 lead to initial increase of ADE-
QUACY. 

NSGA-II starts the optimization with relatively 
high ADEQUACY value since the initial designs 
have large scantlings of the structural elements and 
therefore the stresses in the deck are low. NSGA-II 
proceeds by spreading the frontier towards both 
ends, but the HULL as the more difficult objective, 
stalls the progress in that direction. Although the 
second objective reached much better values, their 
hull weight is too high for practical use; see Figure 6 
and Table 3. 

VOP’s non-dominated frontier for the Strategy H-
A nicely covers the one from NSGA-II for the 
HULL value in range 7600-8600t. There are totally 
191 non-dominated designs in the ‘trail’ left by 
guided search when maximizing for the second ob-
jective. Naturally, all of them are not interesting and 
their number is too large for this problem case, but 
can prove valuable when considering many objec-
tives, or it can be filtered. NSGA-II on the other 
hand is limited by the population size that defines 
the maximal available non-dominated solutions in 
the end of optimization, which is 60 in this case. 
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Figure 6. Overall non-dominated frontier from each of the three 
runs, showing also the two selected designs (O) 

 
Table 3. Designs from the edges of non-dominated frontier 
(HULL values in tones) 

 Guided VOP NSGA-II 
 **

HULL(VOP)x  **
ADEQ(VOP)x  **

HULL(NSGA-II)x  **
ADEQ(NSGA-II)x  

HULL 7312 8595 7641 10 262 
ADEQ. 12.34 18.86 15.62 20.54 

 

5.1 Trade-off design alternatives 

 
Although neither of design alternatives obtained 

in this study cannot be proved to be globally optimal 
due to complexity of the problem, we present two 
design alternatives in order to see how the structure 
resembles the imposed loading condition and the ob-
jective values. We select the design of minimal hull 
steel weight from the VOP’s non-dominated frontier 
and one design with increased ADEQUACY value 
for which the structural scantlings are still relatively 
acceptable. Both designs are shown in Figure 7 and 
their characteristics given in Table 4. The same table 
shows the differences in the adequacy values for the 
deck strakes between the two alternatives. Structure 
was not standardized before presented here nor was 
it given any corrosion addition. 

Structural elements in double bottom, side shell 
and deck structure from the lowest hull steel weight 
design follow vertically the beam distribution of 
weight, as seen in Figure 7, in order to satisfy the 
area moment. Side has the lowest plate thicknesses 
and stiffener sizes, while the bottom elements are 
additionally increased to resist the water pressure. 
Inner bottom elements in a side cargo tank are larger 
than in the bottom because of the increased liquid 
density of 1.25t/m3, and the same is valid for the in-
ner side. For the same tank, reduction in scantlings 
can be seen in the longitudinal bulkhead when going 
upwards in the direction of decreasing cargo pres-
sure. The same happens in a central tank but with 
generally higher plate thicknesses and stiffener sizes 
due to higher density. The deck and inner bottom 

strakes are in that tank also larger than in neighbor-
ing strakes. 

When the design of the lowest hull steel weight is 
compared to the one selected from the non-
dominated frontier with increased ADEQUACY 
value, most salient differences can be observed in 
deck and surrounding strakes. As expected, plates 
are thickened and stiffeners are enlarged in the deck, 
but also in a sheer strake since it contributes to stress 
reduction in deck. The highest strakes in the bulk-
head, next to the deck, posses decreased scantlings 
in order to yield weight savings. 

Other minor differences between the two design 
alternatives can be assigned to the working principle 
of the GA which makes certain variations between 
possible variable values when optimizing the struc-
ture. 
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Figure 7. Scantlings of the main-frame members for the design 

**
HULL(VOP)x  (shown above the dimension lines) and design 
TRADE-OFFx  (shown below). One set of scantlings is shown for 

the strakes that are the same in both alternatives. 
 
Reduction of stresses in the deck leads also to a 

decrease in number of active constraints for such so-
lutions, as can be seen for the two previously de-
scribed alternatives in the Table 4, where constraint 
is considered to be active if stress exceeds 3/4 of its 
critical value. 

 
 
 
 
 
 



Table 4. Characteristics of two selected design alternatives, in-
cluding the adequacy values of stiffener yield (Sy), plate yield 
(Py) and plate buckling (Pb) per each deck strake. 

 **
HULL(VOP)x  TRADE-OFFx  

HULL [t]  7312 8177 
ADEQ. 12.34 18.04 

Act. con. 63 49 
Constraints Sy Py Pb Sy Py Pb 
Deck-CL 0.462 0.15 0.349 0.599 0.33 0.564 
Deck- 2 0.356 0.097 0.239 0.512 0.282 0.462 
Deck - 3 0.432 0.131 0.226 0.575 0.317 0.564 

Deck - side 0.352 0.092 0.177 0.507 0.276 0.473 

 

6 CONCLUSION 

To enable more qualitative decision-making in 
the beginning of design process, it is helpful to 
posses different trade-offs between crucial objec-
tives. We have shown on example of the main frame 
of 40 000 DWT chemical tanker that this can be 
done using vectorized genetic algorithm - VOP in a 
way adoptable to the designers' needs. Relying only 
on the “black-box” approach one cannot expect to 
gain desirable results. Certain parts of the non-
dominated frontier might be undiscovered or their 
attainment would be stipulated with quite long opti-
mization run. Even then the possibilities to improve 
the structure in certain sense would not be known. 

In this study a different approach is taken: firstly 
to optimize for the best possible design according to 
specific objective, and secondly, explore the non-
dominated frontier by including the other objective 
to certain extent. This was achieved by weighting 
the importance of particular objective to steer the 
cloud of design alternatives in desired direction. 
This ‘guided search’ resembles then the desires of 
the user, who can particularly benefit from it when 
understanding the problem at hand. In that sense, it 
is the best to start the optimization with the ‘most 
difficult’ objective that requires manipulation of the 
highest number of variables. After reaching the op-
tima in the difficult objective, it is relatively easy to 
attain its other parts that depend only on several 
variables, the point at which one changes weight fac-
tors can be different: either satisfactory results are 
obtained, or improvements, in terms of objectives, 
became rather poor, as was in our case. 

In the future, the ‘guided’ search methodology 
should be tried on more practical examples involv-
ing ship structures, to allow for further testing of the 
concept. Nevertheless, some fundamental issues re-
main to be studied further: 
− Finding best strategy for three and more con-

flicted objectives, 
− Analysis of the heuristics of weight factors, 
− Application of the ‘guided’ search approach to a 

widespread algorithm, e.g. NSGA-II. 
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