Multi-objective qtimization oiship structure: usingguided searcvs.
conventional concurrent optimization

J. Jelovica & A. Klanac
Helsinki University of Technology, Department of Applied Mechanics, Marine Technology, PL5300, 02015
TKK, Finland

ABSTRACT: Structural optimization regularly involves confliog objectives, where besidhe eligible
weight reduction, increase in e.g. safety or rditghs imperative. For large structures, suchshgs, to ob-
tain a well-developed Pareto frontier can be diftiand time-demanding. Non-linear constraintspluing
typical failure criteria, result in complex desigpace that is difficult to investigate. Evolutiopaigorithms
can cope with such problems. However they are iasteoptimization method. Here we aim to impraveirt
performance by guiding the search to a particugatr f Pareto frontier. For this purpose we userzetjc al-
gorithm called VOP, and use it for optimizationtieé 40 000 DWT chemical tanker midship section.ides
weight minimization, increase in safety is inveatey through stress reduction in deck structurepdéded
approach suggests that in the first stage oneeobbectives is optimized alone, preferably moneglicated
one. After obtaining satisfactory results the otblejective is added to optimization in the secotagjs. The
results of the introduced approach are comparell tlvéé conventional concurrent optimization of dijex-
tives utilizing widespread genetic algorithm NSGAResults show that the guided search brings ltsnef
particularly with respect to structural weight, winiwas a more demanding objective to optimize.eBalbp-
timized alternatives are presented and discussed.

1 INTRODUCTION buckling of structural elements. These reasons con-
fine the choice of possible optimization algorithms
Design of modern ships introduces new complexo those that do not require gradient calculatibn o
structural solutions that must follow the incregsin constraints and objective functions. Evolutionalry a
demand for more reliable and safe products. Innovagorithms have shown capability to handle such prob-
tion has become necessity which ensures survival iems and provide sufficient benefits for the stouet
the market, and it requires improvements of mudtipl Their prominent representative, genetic algorithm
conflicting ship attributes. However, available éim (GA), is used in this study. Several applicatioaseh
does not follow the increasing complexity of designshown that GA is a successful tool for practical
procedure, thus more advanced support systems gyemblems in ship structural design and optimization
required that can assist designers. This is convesee e.g. Nobukawa & Zhou (1996), Klanac (2004),
niently performed through the optimization processRomanoff and Klanac (2007), Ehlers et al. (2007),
but with obstacles on the way. Klanac and Jelovica (2008).

Early design stage lacks precise information on Genetic algorithm operates in the space of design
e.g. loading or structural details, while the basinfl  objectives, by having multiple design alternatie¢s
some requirements, such as e.g. weight, vertical cehand when deciding where to continue the search
tre of gravity, nominal stress levels or lengttwaefld  from generation to generation. This number of avalil
meters are not precisely defined. In generaltihén able solutions is known as a population size and
useful to venture into analysing correlation betwee should grow with the number of considered va-
them and investigate their sensitivity for the dadns riables. Literature suggests using population gize
ered structural arrangement. range from 50 to 500; see Osyczka (2002), Deb

Complex ship structures involve large number 0f{2001). This lengthens the optimization processieve
variables and even larger number of constraints. Vdor a simple engineering problem, so that the numbe
riables are in structural optimization regularhs-di of generated and evaluated designs before reaching
crete, whether they represent element size, mhterithe optima can be more than several thousands.
type, stiffener spacing etc. Constraints are noedr  Clearly, this can be rather costly when optimizing
and non-convex typically involving yielding and large ship structures, especially Finite Element



Method is applied for structural assessment. In anyith equal importance and works by utilising exist-

case, optimization should be short, and if itmet#  ing solutions in the front. It has difficulties aper-

consuming, it is often, for convenience, stoppedate with single-objective optimization case to suff

prematurely, immediately after noticing some im-cient extent as there is simply no frontier thed @n

provements in objective values, and without attainrecombines the dominated alternatives in the pepula

ing their optimal values. Making relevant conclu-tion for the same purpose.

sions based on such results can be misleading and To demonstrate this comparison, a structure of a

costly in the later stages. 40 000 DWT and 180m long chemical tanker will be
Several conflicting objectives that are typically optimized for two objectives: minima of weight and

interesting for ship structural optimization, e.g.maximum of adequacy of deck structure.

weight and safety, form a distinctive Pareto frenti In the continuation, we will use the term ‘non-

which gains in size with problem. Conventional anddominated frontier’ instead of the Pareto fronfwmr

widespread multi-objective GAs, e.g. NSGA-II (Debthe results we obtain, since the evolutionary algo-

et al. 2002) or SPEA2 (Zitzler et al. 2002), attéemprithms strive to it for real-world engineering prob

to attain whole Pareto frontier in one run, so that lems, but reach only certain designs which, whien fi

the very end all Pareto optimal designs are attiinetered, form non-dominated front.

Designer then has a possibility to consider many al In the following chapter we revisit theory behind

ternatives that possess different objective valuethe proposed approach, provide arguments for va-

which are then selected based on some preferendelity and show how re-formulated optimization

But as shown in this paper limited population sizestatement can be utilized. Chapter 3 describes the

restricts such algorithms to fully reach extremggpa VOP algorithm. Chapter 4 compares the optimiza-

of Pareto frontier. Those extreme locations (fortion of the tanker problem by VOP and NSGA-II.

which some objective is at minimum/maximum, re-Last two chapters discuss the findings and conclude

gardless of the others) contain possibly innovativeéhe paper.

design principles that can provide new knowledge

on possibilities of the structure. Recent study by

Klanac et al. (2008) showed that increased crasi2 GUIDING MULTI-OBJECTIVE

worthiness of a ship side can be accomplished with- OPTIMIZATION

out significant sacrifice in weight, contrary t@di-

tional belief. Such conclusion was possible byThe original multi-objective structural optimizatio

comparing the edges of the Pareto frontier. problem of M objectives and) constraints can be
In this study we consider a way to avoid unnecesformalized with:

sary increase in number of evaluated designs to ,

reach desired parts of a Pareto frontier. Simpig,sa 'PD'{‘{ f(x), B (X)19; ()2 0, O] 1,]]} 1)

sometimes the whole frontier is not required to be h h for desi it tivéa the total
contained in the final population. Optimization can'V"€r€ We Search for design aiternatixas the tota

consist of several parts, each exploring a differerd€Sign spacex confined within variable bounds.

part of the frontier. User knows his preference toC0@l S 10 find suclx that minimizes the objectives

ward objectives included in the optimization. Pro—While satisfying all the imposed constraints. Iheo

gress can then be monitored and re-directed if coj—tr"’lintS are satisfied, design is called feasihi tze-

sidered appropriate, for example in the case of no ongs to a feasible s
satisfactory results or simply different aspectied ¢ =(xOX |g(x)20 . 2)
structure wants to be known. Alternatives are then
moving along the frontier towards the instructed di  The solution of Eq. (1) is a Pareto optimal alter-
rection. This is based on the assumption that ®arenative x~ which is non-dominated by other feasible
optimal solutions predominantly share commonrglternatives, i.e. there is no alternative bettantx”
variable values, see Deb & Shrinivasan (2006), sih the objective spac¥ (whose feasible part is de-
that the transition along the Pareto frontier stioul noted with Y®). Such alternative represents then a
not require significant changes in the design andational choice and it belongs to a set of Pargto o
should be quick. To allow this manipulation, optimi tima Q, called also the Pareto frontier and it is de-
zation progress must be monitored in order to corfined as:
clude on the proper moment for changing the direc-.
tion of the serfrch? I Q:{XDQ|DXk’f(Xk)<f(x)’DXkDX\X}- ®3)

To show the benefits of this approach we use a
simple GA called VOP, and compare it with NSGA- o o
II, a recognized algorithm that possesses several a2-1 Concurrent-search multi-objective optimization
vanced features. VOP optimizes both constraints and Standard concurrent-search multi-objective GAs
objectives by using thevectorization principle. seek the whole Pareto frontier in a single optimiza
NSGA-II concurrently optimizes all the objectives tion run, requiring large population size to staie



the encountered non-dominated solutions. Theiwhere normalization of objectivg, for designi is
working principle is based on recombination of sucHinearly performed using

designs to yield new and better ones, thus their co f —minf

vergence is threatened when population size is n (%) = K oxoxi K 7)
adequate. Progress direction of such optimizers in"""’ maxf - minf

objective space can be seen in Figure 1 for the cas DX D

of two objectives. Initial population spreads into Increased weighting factor leads to stronger mi-
multiple ‘streams’ where each progresses to differnimization of corresponding objective and vice ver-
ent parts of the non-dominated frontier. Directadn sa. For convenience, constraints can be set t@ shar
advancement is pre-defined by non-domination corthe same weighting factor. Figure 2a and b show the
cept, and the algorithm is intended to discovemeveprinciple of guided search for two different direc-
the outermost designs in the frontier. If the ressul tions of search. Guided search is divided in two
are not satisfactory enough, one can only tediouslgtages, first to reach the frontier, and secongeto

run the algorithm further, hoping to reach improve-erate non-dominated designs, exploring thus the pos
ments in particular objective without a possibility sibilities of the optimized structural arrangement.
affect on the process. Weighting factors are altered freely by the user, i
any manner and whenever desired. But the manipu-
lation should be based on heuristics and not on ran
dom choice.

The basic idea of weight factor manipulation is to
direct, or guide the ‘cloud of alternatives’ in sda
during the optimization process which would ‘leave
behind’ a trail of ‘good’ alternatives.

fo(x) A

a)

f2(x) A

—
0 f,(%)
Figure 1. Standard concurrent approach to GA-bamatfi-

objective optimization, shown in the bi-objectivase (first ob-
jective to be minimized and second to be maximized)

2.2 Guided search approach

In this approach only a part of the Pareto froner

searched based on the instructed direction. Taevallo 0
control over this direction, specific manipulative
weighting factors are applied. Before such manipulab)
tion can take place, problem statement in Eq.<1) i
re-defined into vectorized form following Klanac &
Jelovica (2008):

min{ £,(X),...fy (%) fy o (X) 0oy (X)) - (4)

xOx

F2(x) A

where constraintg; (x) are now treated as addition-
al objectives{f,,,,(x),....fy., (x)}, after being con-
verted with the Heaviside function, given as

_|=9i(x)ifg;(x)<0
fus (X)= 0, otherwise vehd] ©)

—

. . . 0 f, (X)

Control over a particular objective is gained by L
multiplication of its normalized value within oneAG ~ F'9ure 2. Two proposed routes of the search domcti

population with the weighting factos, - Deb and Srinivasan (2006) indicate that the Pareto

min{ Wkﬂ(x)},gkg[l,m +1J] optimal design alternatives of one system possess
o (6) many commonalities. If this is considered to apply

stOsws<1Xw =1 for our problem, Pareto optima obtained in thet firs



phase would share then most of the variable values | = L

with the Pareto optima obtained in the later phgse( | 8 0 g %&j =
of optimization. Decomposing, therefore, the oJeral LT tAd -
optimization problem as proposed should not negeﬂ- IQi C O ]
tively affect on the possibility to generate Parepe | 178 g
tima. On the contrary, it should affect positively, 0] = I
since a multi-objective GA would perform then a g F 24 T2115m
lesser amount of variable changes to generatedDarqt 0] 8 i 0 i ==
frontier than if optimization would have been done se. [T g . g s o
concurrently. ‘1.8'50't/rﬁ O & 120w L7 8 1.025und
| B g - 6 .

3 VOP — A GA FOR GUIDED SEARCH | Q .

To guide the search in multi-objective optimiza—‘ 0 ° t0d
tion of ship structures, we employ a GAcalled VOP__ 1 O 7
(Klanac and Jelovica 2007, 2008, Klanac et ali (yws {077 (2 (O [O* 120 3
2008a, 2008b, Jelovica 2008). VOP is a binaryie t tr vl il vy

O™ ]
coded algorithm consisting of: a) a fitness calmrla © 5090631 1760 14100 16104
b) the weighted roulette wheel selector operating Ofigyre 3. Half of the main frame section of a cdeskd tanker
the basis of computed fitness values, and c) a sulind scantlings of the transverse structures (Lineei).
routine executing the single-point cross-over véth
probability of pc and the bit-wise mutation with a .
probability of py. These are standard operators and-1 Variables

are, except for the fitness calculator, elaborated The structure of one half of the ship’s main frame

Jelovica (2008), Klanac and Jelovica (2008c). is divided into 47 longitudinal strakes charactediz
VOP's fitness function is defined as: by plate thickness, stiffener size and number, ma-
i) terial type and, additionally, size of transversh-
¢1(x,i) =(”;§X[ o(x j)]— o(x l)) (8) ments. Former two are varied in this study while th

later three are kept constant. Thus two variables a
where the design’s distancx,i) from the origin of ~ considered per each strake, so the optimizatiob-pro

normalized objective space is obtained as: lem consists in total of 94 variables. Number of
v stiffeners per each strake is depicted in Figute-3
d(x’i):{z[wkﬁ(x,i)]z} ,DkD[l,M +J] (9) gethe_r with sca}ntllngs of the trar_lsversal structure
k Considered variable values are discrete, having the

Minimization of the distanced(x,i)replaces the Step for the plates of 1 mm, a value in general ap-
problem in (6).. Definition of the weighting factor propriate for early design stage. Plate thicknesses
w s elaborated in the actual example that follows. double bottom and double side structure are assumed

to be available from 8 to 23mm, except of stringers
whose range is the same as for longitudinal bulthea
4 OPTIMIZATION OF A TANKER STRUCTURE and the deck, 5 to 20mm. Stiffener sizes are talsen
standarcholland profiles; see Rukki (2008).
Guided search for optimal solutions is examined
on the 40000 DWT and 180m long chemicalg 2 Sructural model and constraints
tanker’s midship section. Its main frame longitdin . .
elements are optimized for the smallest allowed he midship section is assumed to stretch be-
scantlings, while keeping the topology of the structween L/4 and 3L/4 cross-sections, without the
ture unchanged. The tanker's arrangement, as seéfange in scantlings. It is subjected to the normal
in Figure 3, is characterized with two internalgen  S€rvice loads, those being the hull girder loaks, t
tudinal cofferdams bounded with double sides an§ardo loads and the lateral hydrostatic loads, avhil
double bottom structure. The tank’s plating is buil Pallast tanks are assumed to be empty. Pressure
from duplex steel to resist the aggressive chemical02ds are calculated from liquid density indicated
which are transported and is the only part of théigure 3, while global loads are shown in Table 1.

structure with yield strength of 460 MPa. For the
remaining structure, 355 MPa steel is used.



Table 1. Wave loads acting on a ship. is in the end treated as the objective. The valioit

Loading conditio Magpnitud Locatior such an approach is shown in Koski & Silvenoinen
Saggint (1987).

Xgﬁ:ﬁgl gﬁggﬂgfome 5442500%9 KNr ::721 The total weight of the hull is calculated by ex-
Hogging tending the obtained cross-sectional weight for the
Vertical bending mome 2 932 000 kNr L/4 whole length of the ship, on top of which the weigh
Vertical shear forc 72 960 ki L2 of web frames of 21.4t each 3.56m is added.

Maximization of deck adequacies also positively

The response under the hull girder loads is calcunfluences on the feasibility of design alternasive
lated applying the numerical Coupled Beam methog\lthough treated as the objective, they are also th
of Naar et al. (2005). On top of that is addedrthe constraints which, in case of negative value, rexei
sponse of the panel under the cargo and hydrostai#ouble penalization: first they deteriorate the- dis
loads, calculated with uniformly loaded simpletance function in(9), coming from their transforma-
beam. tion using (5) and second, their negative values de

Each strake is checked for eight failure concrease the sum that is meant to be maximized. This
straints concerning plate yield and buckling, stiff will then lead to the strong penalization of theal
ener yield, lateral and torsional buckling, sti#€s  natives with large infeasibility, while those with
web and flange buckling and crossing-over. Thesemaller infeasibility will become preferred, again
criteria are taken from DNV (2005), Hughes (1988)leading to the increase in safety. If on the other
and Hughes et al. (2004). The last constraint églus hand, the adequacy of some alternative is positive,
to ensure controlled panel collapse due to extensivits value as vectorized constraint will now be zero
in-plane loading, where plating between stiffenersyhile as objective it will remain positive, and thke
should fail first; see Hughes et al. (2004). Phgifjc  ternative can be freely maximized.
this means that the panel is not allowed to comdist  |f HULL is presented on abscise and ADEQUA-
thick plate and weak stiffening, and the stiffesize  CY on ordinate in the objective space on Figure 2,
has to rise with plate thickness. However, in thisone can expect similar location and shape of the Pa
study the cross-over constraint is activated onlyeto frontier in the tanker case.
when stresses in stiffeners and plates exceedf2/3 o
their buckling or yield strength, since it is pd&ss L . :
to consider gcont>r/olled collgpse if the coﬁ)lapse -4 Optimization using VOP: a guided search
unlikely to occur. Altogether 376 failure critergae The optimization is carried out with a population
calculated for each loading condition, which raisesf 60 design alternatives. This is significantly
their total number to 1504. They are transformedmaller than recommended in the literature, but ac-
into adequacies, effectively describing an optimizacounting for overall optimization time it is consid
tion constraint. Adequacy is considered as a norered sufficient, based on some preliminary resflts
linear normalization function between the strudturaweight minimization for the same case reported in
capacity of some structural elemgnta, (x), and a Klanac et al. (2008). GA parameters are kept con-
loading demand acting on it (x), as proposed in stant during the optimization: crossover probapilit

Hughes et al. (1980): is set to 0.8, while the mutation probability i9@3.
a (x)—|b (X)| Both values are set based on the literature (Deb
g (x)=———L 174 (10) 2001) and previous experiences of the case (Klanac
T A (%) +]by ()| et al. 2008).

Two optimization runs are performed, each fol-

o lowing a different search direction. The intentisn
4.3 Objectives to see the influence of search path on the non-
Two objectives are considered in this Study.domlnated frontier obtained in the objective space.

minimize the total weight of hull steel (abbreviate 'Nitially we decide to start the first run with gnl
as HULL) and maximize the adequacy of deckdULL minimization and optimize for ADEQUACY
strakes (abbreviated as ADEQUACY). Minimizing afterwards. We name this search direction ‘Strategy

the weight would increase the payload capacity anfli-A" &ccounting for the sequence of objective con-
to certain extent provide cost savings. By introducs'derat'or?' The set():_ond_ run talaes_ oppbobsne_patg be-
ing the latter objective, the goal is to explore th IWeen the two objectives and Is abbreviated as

needed trade-offs when increasing the safety oPtrateédy A-H'. In fact, these two strategies cerre
some part of the structure. In this case this & thSPONd fo the two example routes in Chapter 2, first

safety of deck structures which are according to ex°"€ S€en in Figure 2a and the later in Figure 2b.
periences prone to failures, e.g. buckling or teig To prevent any bias towards particular objective,

To simplify the process, all the adequacies of th&0th optimization runs are initiated with the same
- icfandomly generated population of design alterna-

tives. Each strategy in the Stage 1 performs single



objective optimization to reach the different edge Table 2. Relative value of the weighting factorsiig the op-
non-dominated frontier between HULL and ADE- timization for the two search directions (givenues are ob-
QUACY. Their weighting factors are accordingly sett"i‘IL'”ed by fraction wectiveWeonstrant)

to emphasize improvements only in desired objec _Stage Generation W Wapequacy Weonstr
tive, as seen inTable 2. Reference value of the§ 1 1 1 0 1

weighting factor is 2.646D1031 obtained from the & 2 1028 1 1 1
fraction 3/(M +J), whereM is taken as 2 and _& 1293 05 1 1
equals to 376. Other weighting factors in the con-T Stage Generation W  Wapequacy Wconstr
tinuation are scaled relative to this value. i 1 1 0 1 1
Stage 1 of the Strategy H-A is run until the point 262 1 1 1
where the improvement rate becomes small, beings 941 1 05 1
the 102§ generation in this case, as seen inFigure 4% 1215 1 03 1

Assuming now that the further mass reductions wilt
not be significant and that the ‘light’ alternatve

have attained predominantly optimal variable values, : : ; :
o B ; g and exploring the non-dominated frontier, kut i
Stage 2 is initiated by adding the ADEQUACY gio o from the opposite direction, firstly seanghi
maximization to the minimization of HULL in order for the maximum of ADEQUACY and in Stage 2 at-
:ﬁ genTerate the I_nﬁn{ﬁ_omlnlzit?d ffoﬂ“ﬁtf bitwﬁe?aining the other edge of the frontier. The adjust-
em. 10 -accomplish this, relative weighting 1aclory,aniq'in the weighting factors during this optimiza

of ADEQUACY is changed from 0 to 1, being now tion are : : :
X presented in Table 2, with each leadirg th
the same as for HULL. Thus the interest has moveéolutions to another part of the frontier. Initial

to the ‘middle’ of the frontier, and the algorithma- : : : - :
: . ' crease in ADEQUACY is continued until generation
sponds by starting to improve the ADEQUACY atogs \here certain ‘plateau’ is visible in Figure 5.

the expense of the HULL, compare Figure 4 an ssuming no significant improvement in ADE-

Figure 5. Progress is monitored, and in the TZQBQUACY is possible after that point, HULL is in-
generation the interest is additionally moved t@sar (| ,ded in the search to attain the néeded trace-off

the second objective to explore the frontier furthe riq a5 to significant decrease of hull stedbhve
Optimization is stopped after 1500 generationsy i retaining relatively sound values of ADE-

when it become obvious that current HULL ValueSQUACY, see Figure 4 and Figure 5. What differs

nearing 8500t, are too high to even be considesed this strategy from the previous one is much higher

possible solutions in reality. ADEQUACY was in- ,mber of variables that must be altered in order t

creased from 12.3 to 18.8 which was declared S“ff'(:ome from maximal ADEQUACY design to mini-

. mal HULL solution. Also, we are in this optimiza-
¥ion case more interested in reaching low hulllstee
- ; . . weight, thus the algorithm is for Strategy A-H fdce
having 8 constraints. But in order to have constrai demand to gain both extremes of the frontier.
value equal to one, stress in corresponding membghg afore  the optimization is not stopped as & th
should be zero, so obviously such a case cannot €&frategy H-A, but has to rapidly come from one end

Strategy A-H follows the same logic when reach-

take value from 0 to 32, consisting from four semk

Ist. to the other. Optimization was stopped when meet-
ing the stopping criterion of 1500 evaluated genera
tions.

oS E— . , - (NSGA-”)
1012 _____________ : o x* (Strategy H-A)
o . x x* (Strategy A-H)
& 10
S o5 |y
_| 3 G » %
D 8 5 . ) X
I ' ’r:‘ 8
[ JE — = % o
75 —— s o -
7 Generatio
0 200 400 600 800 1000 1200 1400

Figure 4. Progress of HULL optimization for VOP ai8GA-II, showing generation’s best design
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Figure 5. Progress of ADEQUACY optimization for V@Rd NSGA-II, showing generation’s best design

plify the notation. Continuing the optimization tvit

. , the second stage, valuable trade-offs between the

4.5 Comparison with NSGA-| two objectives are created up to the point wheee th
Binary coded version of NSGA-Il (Deb et al. further increase in HULL is inadequate.

2002) is applied to compare the results from the It can be clearly seen in Figure 6 that the Stsateg
‘guided search’ optimization described previously. A-H performed worse. This confirms the suspicion
NSGA-Il is characterized with: that changing too many variables can be difficoit f

— an elitism concept that ensures preservation dhe optimizer. All 94 variables had to be alteredeh
non-dominated solutions encountered from then the Stage 2, while in the previous strategy effe
beginning of the optimization run, tively only 8 lead to initial increase of ADE-

- ranking the solutions in the population accordingQUACY.
to non-dominated frontier in which it belongs to, NSGA-II starts the optimization with relatively

— giving advantage to solutions that belong to lesfigh ADEQUACY value since the initial designs
crowded part of the objective space, have large scantlings of the structural elements an

— constraint-domination which prefers any feasibletherefore the stresses in the deck are low. NSGA-II
solutions over the infeasible, or between two inproceeds by spreading the frontier towards both
feasible designs selects the one with less sum @inds, but the HULL as the more difficult objective,
violated constraints. stalls the progress in that direction. Although the
Optimization with NSGA-II is initiated using the second objective reached much better values, their

same random population as VOP in Stage 1. Thiull weight is too high for practical use; see Feyé

same crossover and mutation probabilities appland Table 3.

also. In difference to VOP, both HULL and ADE- VOP’s non-dominated frontier for the Strategy H-

QUACY are considered from the beginning, and opA nicely covers the one from NSGA-Il for the

timization is run conventionally for the same amounHULL value in range 7600-8600t. There are totally

of generations. Optimization history for each objec 191 non-dominated designs in the ‘trail’ left by

tive is shown in Figure 4 and Figure 5. guided search when maximizing for the second ob-
jective. Naturally, all of them are not interestiagd
their number is too large for this problem casd, bu

5 DISCUSSION can prove valuable when considering many objec-

tives, or it can be filtered. NSGA-Il on the other

Figure 6 depicts the essential comparison betwedmnd is limited by the population size that defines

the results of optimization performed with thethe maximal available non-dominated solutions in

‘guided search’ approach, utilizing VOP, and withthe end of optimization, which is 60 in this case.

the standard multi-objective approach, utilizing

NSGA-II. Minimizing solely HULL in the first stage

of Strategy H-A, VOP managed to attain design with

the hull weight of 7312t, 330t lower than with

NSGA-II; see Table 3 for the alternatives located i

the edges of the frontier, marked with **' to sim-
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strakes are in that tank also larger than in neighb
ing strakes.

When the design of the lowest hull steel weight is
compared to the one selected from the non-
dominated frontier with increased ADEQUACY
value, most salient differences can be observed in
deck and surrounding strakes. As expected, plates

16 ©NSGA are thickened and stiffeners are enlarged in tlok,de
5 ( " Strategy H-A but also in a sheer strake since it contributestrss
“ 7 " Strategy A H reduction in deck. The highest strakes in the bulk-
" A head, next to the deck, posses decreased scantlings
d’." in order to yield weight savings.
12 HULL [1000t] — Other minor differences between the two design
7.0 7.5 8.0 8.5 9.0 9.5 100 105 110 115 120

alternatives can be assigned to the working priacip
of the GA which makes certain variations between
possible variable values when optimizing the struc-

Figure 6. Overall non-dominated frontier from ea€hhe three
runs, showing also the two selected designs (O)

Table 3. Designs from the edges of non-dominatedtifer
(HULL values in tones)
Guided VOP NSGA-II

" " ox "

X ADEQ(VOP) XHuLLnsGAl)  XADEQINSGA-I)

XhuLL(vop)

HULL

ture.

13; 300x11

14; 300x13

/ 20; 430x17
11

1111

1

8595 7641 10 262
18.86 15.62 20.54

7312

ADEQ. 12.34

\
|
|
5.1 Trade-off design alternatives \
Although neither of design alternatives obtained‘
in this study cannot be proved to be globally optim
due to complexity of the problem, we present two
design alternatives in order to see how the stractu
resembles the imposed loading condition and the ob-
jective values. We select the design of minimal hul‘
steel weight from the VOP’s non-dominated frontier
and one design with increased ADEQUACY value\
for which the structural scantlings are still ralalty

12; 240x10

9; 240x12

14; 260x10

10; 200x12
8; 160x8
8; 200x10

7, 140x7
13; 240x11

13; 260x10

14; 280x11
13; 300x11

S.G. =

1.85 tin?

15; 260x11

14; 240x12
13; 280x11

17; 280x11
16; 300x11

18; 370x13
20; 300x12

14; 220x12

6; 180x8

6; 140x8
13; 220x10
11; 220x12

6; 120x8

12; 240x12
12; 220x12
5; 180x10

11; 260x10

[ 7 10;320x13

7 5; 200x9
5; 120x6

13; 240x10

13; 260x10

1 9;280x12

16; 280x11

10; 240x10

/ 19; 430x15 21: 280x12 TZS_ yETE:
T

9; 180x9
17; 180x10

T T 1T

13; 320x12

12;300x11 L,

T 1

SG. =
1.25 tnt

13; 240x10
13; 260x10

I T T T 711

12; 300x11

1

13; 260x10

15; 340x]

T RT7

17; 280x11/

1111

acceptable. Both designs are shown in Figure 7 ar

6 | I R

~ 14; 180x8 9; 180x8

T T T T
I = 9; 180x8

9; 220x12

] I

their characteristics given in Table 4. The sarbéeta

F 11; 180x10

1.1 1 11

9; 200x9

1

F ~ 10; 200x9

10; 200x16 9; 180x10-
111 111

1 1

9; 160x8
19; 430x15

10; 200x10

8; 320x12

. 10; 160x8

9; 180x10

5; 140x8

5; 140x8

9; 200x9

5; 160x8

6; 160x7
9; 220x10
9; 280x11

9; 280x12

shows the differences in the adequacy values for t {

deck strakes between the two altematives. Strectur & ons e Lnam L L n

was not standardl_zed bef_o_re presented here nor Wai%ure 7. Scantlings of the main-frame membergHerdesign

it given any corrosion addition. _ Xuuwory  (Shown above the dimension lines) and design
Structural elements in double bottom, side shellx, o (shown below). One set of scantlings is shown for

and deck structure from the lowest hull steel weighthe strakes that are the same in both alternatives.

design follow vertically the beam distribution of

weight, as seen in Figure 7, in order to satisfy th Reduction of stresses in the deck leads also to a

area moment. Side has the lowest plate thickness@gcrease in number of active constraints for seeh s

and stiffener sizes, while the bottom elements arBitions, as can be seen for the two previously de-

additionally increased to resist the water pressuré&cribed alternatives in the Table 4, where cortrai

Inner bottom elements in a side cargo tank arestarg is considered to be active if stress exceeds 3it of

than in the bottom because of the increased liquigritical value.

density of 1.25t/y and the same is valid for the in-

ner side. For the same tank, reduction in scarstling

can be seen in the longitudinal bulkhead when going

upwards in the direction of decreasing cargo pres-

sure. The same happens in a central tank but with

generally higher plate thicknesses and stiffermssi

due to higher density. The deck and inner bottom
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