

IMPROVE

PRODUCTION SIMULATION

Michael Hübler, Frank Roland

IMPROVE Workshop

4 October 2006

ERP and simulation activities of CMT – Overview

Consulting and technical support for projects concerning shipbuilding related production planning and control, assisted by simulation methodology

- Project management for simulation projects
- Preparation and check of investment decisions using simulation
- Integration of simulation solutions to the shipyard planning process (short, mid and long term planning)
- Complete development of simulation models (concept, development, start-up)
- Simulation studies covering activities ranging from strategic planning to operative control
- Simulation assisted failure management

Planning horizon	Strategical	Tactical	Operational
application	Space allocation / layout Shipyard development Personnel requirement Scheduling Cost estimation Make-or-buy decisions	 Transport / Logistics Sequence planning Space allocation considering assembly process Painting systems Worst case-scenarios 	 Labour utilisation Production control considering status (e.g. painting control) Failure management

Shipyards' problems with production scheduling and simulation

- Cost pressure and product properties → scheduling complexity
- one-of-a-kind or small lot size production → scheduling frequency
- Danger of incorrect planning is extremely high → scheduling risk
 - → Conventional planning and scheduling methods alone do not ensure sufficient results for shipyards
- Discrete event simulation provides opportunity to virtually test and evaluate planning scenarios, but...
- Building up required in-house know-how is time and cost consuming
 - many shipyards only used simulation if at all from time to time for case studies performed by consultants
- Some shipyards tried out simulation tools in the 1990's, but...
- lack of flexibility (shipyard specific rules, pre-customised modules)
- lack of maintainability (adaptation of models according to shipyard process changes took longer than the processes' change itself)
 - → Simulation did not have the chance to become accepted at shipyards

Approach – benefits of simulation toolsets

- simulation toolsets are available for mass product industries
- toolset = tailored collection of modules representing typical resources, and logical units of a branch
- → toolsets help saving costs for model development and maintenance
- Shipbuilding simulation toolsets are not offered on the market, but...

→ object technology of simulators allow users for building up own toolset libraries...

...and so did some German shipyards

Content of the Simulation Toolset for Shipbuilding (STS)

- Administrative Modules
 - Staff Management, Shifts, ...
 - Toolset Administration
- Outfitting
 - Assembly
- Logistic
 - Storage management, space allocation, supplier, ...

- Material
 - Product breakdown

<u>→</u> ₩ 💹 🗵 🗸 🖒 🗘 3D

- Steel
 - Machines and Portal for welding, cutting etc.,

- Transport
 - Transport control, -vehicles, -aids, ...

Example of Modules – Cutting machine

STS Cutting machine

Standard machine

Name: SingleProc	ingleProc		☐ Gestort	Eingang gesperit	
Etikett		Е	Planned	Ausgang gesperit	
Zeiten Rüsten Stö	irungen Steu	uerungen	Ausgangsverhalt	ten Statistik Importer	4
•					
Bearbeitungszeit:	Const	×	1:00.0000		Г
Rüstzeit:	Const	_	0.0000		
Erholzeit:	Const	×	0.0000		Г
Zykluszeit:	Const	-	0.0000		П

Example of Modules – Cutting machine animation

3D - Animation

2D - Animation

Case study Flensburger - final assembly

- Simulation model of the whole production is being developed
- Actual project is modelling of final assembly phase

3D visualisation included as an optional function in each model

Case study Flensburger – machine layout studies

- New product mix → increased thin sheet production, many extra hours and external processing
- New thin sheet processing concept developed in 2005
 - Separation of cutting process from grinding, marking etc.
 - Evaluation of several concepts for processing material from two sides (turntable, lifting devices)
 - Combination of lifting device and two cutting machines proved to provide best throughput

Case study Flensburger – Logistic studies

- Large amount of furnishing etc. for newly built passenger ships and car ferries → new materials management concept required
 - Preliminary analyses (material quantities, dimensions, delivery dates, transport devices' properties) and storage of results in Access database
 - Simulation study showed that existing stockroom on site is not sufficient
 - Consequently, external storage area close to FSG premises was arranged
 - Transport between material store and shipyard was ensured by simulation

Case study Flensburger – short term production planning

- Simulation model originally developed for concept studies in 2001 (new panel line)
- Model still in use for planning of future production programs at FSG
- Goal of simulation in production planning: provide optimum plan at the time of production.
- Features:
 - Regular feasibility tests of production plans, performed by planner or foreman
 - Definition of required manning level for panel line and section assembly
 - Detection of bottlenecks (utilisation diagrams)

Case study Aker Yards SA - INTERSHIP Project

Production simulation – Design for production and cost

- Aim: support the efficient use of resources within a mechanized panel fabrication line
- Development of a concept for a simulation tool for scheduling and resource planning
 - Data specification and concept
 - Design simulation model
 - User interface for planner
 - Integration to existing software landscape
- Basis: Simulation toolkit for shipbuilders
- Partner: University Liege

04.10.2006 13:30

Case study Aker Yards SA - Simulation procedure

Cooperation opportunities

SimCoMar – Simulation Co-operation in the Maritime Industry

Innovative network for strengthening and enhancement of simulation in the maritime sector

Simulation application (network of competence)

Dissemination Consolidation. enhancement (external) (internal)

Assistance in selection and introduction of simulation method and software

Know how transfer

Project support

Simulation knowledge base

Research

Fundamental Application oriented

Ship outfitting

Simulation and optimisation

Strategic development Distributed simulation

Product use scenarios

Simulation and Virtual Reality

Tool development

Internally

Externally

Maintenance of toolkit

Development of new tools

Simulation data management

Impact on development of

basis software (representation of shipbuilders' interests)

Shipyard practice

Contacts and questions welcome at

huebler@cmt-net.org

Thank you for your attention!