Least Cost Structural Optimization of LNG Ship

C. Toderan – ANAST Ph. Rigo – ANAST M. St M'leux – Aker Yards France

4 October 2006 – University of Liege

TMDDOVE - WECEMT A Octobor 2006

University of Liego - ANAST

Outline

- problem definition
- LBR-5 optimization tool
- Structural Model
- Loading cases
- Constraints to optimization
- Objective function
- Results, conclusions

Problem definition

• Aim : To provide least construction cost and feasible scantlings of four tanks of a medium capacity gas carrier

TMDDOVE - WEGEMT & Octobor 2006

University of Liego - ANAST

Problem definition

- Scantlings optimization to be performed using LBR-5 software (University of Liege)
- Two different ways to assess the construction cost and scantlings sensitivities to be investigated :
 - 1. Simplified cost model : early stage of design, low level of information
 - 2. Advanced cost model : based on production breakdown, information about structural details are already known

LBR-5 Optimization Tool

LBR-5 Optimization Tool

- scantlings optimization of <u>cylindrical structures</u>
- basic structural element : stiffened panel (longitudinally and transversally)

- analytical solver
- fast convergence of optimizer (10 15 iterations)

Structural Model

- 41 stiffened panels
- 4 additional panels to simulate sym. axis
- total 278 design variables (5 to 9 per panel)
- initial design defined by CAT (AKER Yards) using MARS software (BV)

Structural Model

9 design variables (scantlings) are defined for each panel :

- plate thickness
- longitudinal stiffeners : 3 sizes + 1 spacing
- Frames : 3 sizes + 1 spacing

Loading cases

- 18 basic loading cases were defined by ALSTOM using BV rules (MARS)
- 5 loading cases (combinations of basic loading cases) were selected for LBR-5

LBR5 Loading case 1 : maximum lateral pressure

LBR5 Loading case 2 : maximum deflexion of the double bottom

LBR5 Loading case 3 : maximum deflection of side tank LBR5 Loading case 4 : longitudinal stresses under Hogging

Loading cases

- the maximal still water bending moments were valued by CAT through direct calculation (loading manual)
- the wave bending moments were obtained from classification rulebook (BV)

LBR5 Loading case 5 : longitudinal stresses under Sagging

Constraints to optimization

- 106 equality constraints between design variables are used, e.g., to impose uniform frame spacing for the deck, bottom and the side ballast tanks.
- 203 geometrical constraints (about 5 to 6 x 41 panels).
 - <u>Ratio web / flange</u> : 1,0 ≤ h/w ≤ 2,0
 - Web Slenderness :

 $h - 40 d \le 0$

• <u>Web/Plate Compatibility</u> $\delta - 2 d \le 0$ (welding ability)

Constraints to optimization

<u>1900 structural constraints</u> (380 per load case):

- σ_c frame & σ_c stiffener (web/plate connexion web/flange connexion),
- σ_c plate, to check if $\sigma_c \le s_1 \cdot \sigma_o$ (with s_1 a partial safety factor and

 σ_{o} the yield stress);

- Local plate buckling: $\delta_{MIN} \le \delta$ (with δ_{MIN} the minimum plate thickness to avoid buckling and local yielding);

- Ultimate strength of stiffened panel: $\sigma / \sigma_{ULT} \le s_2$ with s_2 a partial safety factor.

Constraints to optimization

Side constraints for all design variables were recommended by CAT :

- the upper limit for plate thickness is fixed to 25 mm.

-	2.00 m≤	Δ_{Frames}	\leq	4.00 m	
-	0.50 m ≤	$\Delta_{\mathrm{Stiffeners}}$	\leq	1.00 m	
-	0.10 m ≤	h _{web stiffeners}	\leq	0.50 m	
_	8.0 mm ≤	Web-frames	thicknes	s ≤25.0 mm	

LBR-5 Simplified Cost Module : MATERIAL COST

LBR-5 Simplified Cost Module : LABOR COST

$$F_{Labour} = \eta \cdot k \cdot C_1^o \cdot LAB$$

$$LAB = L \cdot B \begin{bmatrix} \frac{1}{\Delta_X} \cdot P_4 + \frac{1}{\Delta_Y} \cdot P_5 \\ + \frac{1}{\Delta_X} \cdot \Delta_Y \left(P_6 + \beta_X \cdot \beta_Y \cdot P_7 \right) \\ + \frac{1 - \alpha_X}{\Delta_X} \cdot P_9(X) + \frac{1 - \alpha_Y}{\Delta_Y} \cdot P_9(Y) \\ + P_{10} \end{bmatrix}$$

LBR-5 Simplified Cost Module : test on sensitivities

LBR-5 Advanced Cost Module

- only labor cost is detailed
- take into account a specific cost database from CAT
- about 60 different fabrication operations were selected
- take into account about 30 types of welding and theirs unitary costs
- requires additional data about the structural model

LBR-5 Advanced Cost Module : Labor Cost

$$CO_{ik} = Q_{ik} \times CU_{ik} \times K_{ik} \times CA_{ik} \times CA_{ik}$$

 $Q_{ik} = quantity$ $CU_{ik} = unitary cost$ $K_{ik} = control coefficient$ $CA_{ik} = access coefficient$ $CAT_{ik} = workshop coefficient$

<u>TOTAL</u>: $CT = \sum_{i} \sum_{k} (CO_{ik})$

CAT : panel assembling

TMDDOVE - WEGEMT & Octobor 2006

University of Liego - ANAST

CAT : panel assembling

IMDDOVE - WEGEMT / Octobor 2006

University of Liege - ANAST

Results – simplified cost module

SEARCH FOR THE LEAST COST DESIGN (with continuous design variables)									
		SPACINGS			Duct keel	LEAST COST		WEIGHT	
CONFIGU- RATIONS	Optimum Type	Number of Web- frames	Second. Frame (Δ c)	Stiffeners (∆ L)	bulkhead. Plate Thickness	COST SAVING (%) (see 1)		(%)	
	Shown change(s) between 2 successive					Between 2 successive steps	Cumulated saving		
1- ALSTOM	MARS BV	Nw	$\Delta w/3$	ΔL (Alstom)	100%	0.00%	0.00%	100% (ref)	Initial Design (used as reference)
2- MET8 E00	Least Cost	Nw	$\Delta w/3$	ΔL (Alstom)	105%	-1.39%	-1.39%	98.34%	
3- MET8 E90	Least Cost	Nw	$\Delta w/3$	1.15 ∆l	105%	-2.46%	-3.85%	101.61%	
4- MET8 B90	Least Cost	Nw -3	$\Delta w/3$	1.15 Δl	130%	-6.40%	-10.25%	104.73%	plate thickness too large
5- MET8 F90	Least Cost	NW -3	∆w/4	1.15 ∆l	100%	1.67%	-8.58%	103.42%	OPTIMUM SOLUTION
6- MET8 F	Least Cost	Nw -3	$\Delta w/4$	1.28 ∆l	100%	-0.53%	-9.11%	105.29%	(*) Poor efficiency
(*) Stiffener spacing too large => cost savings of 0.5% but increased straightening work => not efficient !!									
(1 Variation induced by the changes occured between two configurations.									

Results – simplified cost module

 in order to avoid the increase of weight, a new structural layout was proposed by CAT

Results – simplified cost module, layout modified

SEARCH FOR THE LEAST COST DESIGN (with constraint on the weight)									
	SPACINGS				Duct keel LEAST COST		WEIGHT		
CONFIGU- RATIONS	Optimum Type	Number of Web- frames	Second. Frame (Δ _C)	Stiffeners (Δ _L)	bulkhead. Plate Thickness (mm)	COST SAVING (%) (see 1)		(%)	
	Shown c	hange(s) b / ste	etween 2 si ps	uccessive		Between 2 successive steps	Cumulated saving		
ALSTOM	MARS BV	N _W	Δw/3	$\Delta_{\rm L}$ (Alstom)	100%	0.00%	0.00%	100.00%	Initial Design (used as reference)
MET8 E-78	Least Cost	N _W	Δw/3	Δ_{L} (Alstom)	105%	-1.39%	-1.39%	98.34%	
MET8 C-78	Least Cost	N _W -2	Δw/3	$\Delta_{\rm L}$ (Alstom)	122%	-4.85%	-6.24%	100.21%	Duct-keel plate thickness too large
MET 12 (*) Continuous	Least Cost	N _W -2	▼ <u>∆</u> w/3 (*)	$\Delta_{\rm L}$ (Alstom)	88% (*)	-0.68%	-6.92%	99.68%	OPTIMUM SOLUTION (with discrete design variables)
MET 12.b (*) Discrete	Least Cost	N _W -2	Δw/3 (*)	$\Delta_{\rm L}$ (Alstom)	88% (*)	0.45%	-6.47%	100.88%	OPTIMUM SOLUTION (with continuous design variables)
(*) Layout is modified									
(1) Variation induced by the changes occured between two configurations.									

Results – advanced cost module

Results – advanced cost module

Thank you for your attention !

TMDDOVE - WEGEMT / Octobor 2006

University of Liego - ANAST