

Proceedings of IMPROVE Final Workshop

Design of Improved and Competitive Ships using an Integrated Decision Support System for Ship Production and Operation

> 17th - 19th of September 2009 Dubrovnik, Croatia

PowerPoint Presentations, Vol. II

Edited by Vedran Žanić and Jerolim Andrić

University of Zagreb Faculty of Mech. Eng. and Naval Architecture

Zagreb 2009

Proceedings of IMPROVE Final Workshop

Design of Improved and Competitive Ships using an Integrated Decision Support System for Ship Production and Operation

PowerPoint Presentations, Vol. II

Edited by

Vedran Žanić

<u>vedran.zanic@fsb.hr</u> Faculty of Mechanical Engineering and Naval Architecture University of Zagreb, Croatia

Jerolim Andrić <u>jerolim.andric@fsb.hr</u> Faculty of Mechanical Engineering and Naval Architecture University of Zagreb, Croatia

Project co-ordinator:

Philippe Rigo <u>ph.rigo@ulg.ac.be</u> ANAST University of Liege, Belgium

September 17-19, Dubrovnik, Croatia

IMPROVE Consortium Members

-	ANAST, University of Liege	Belgium
StXEurope	STX Europa	France
	Uljanik shipyard (ULJANIK, USCS)	Croatia
	Szczecin New Shipyard (SSN)	Poland
ſ	Grimaldi	Italy
E	Exmar	Belgium
P	Tankerska Plovidba Zadar (TPZ)	Croatia
0	Bureau Veritas (BV)	France
DNAT	Design Naval & Transport (DN&T)	Belgium
(DG)	Ship Design Group (SDG)	Romania
MEC	MEC	Estonia
TKK	Helsinki University of Technology (TKK)	Finland
	University of Zagreb (UZ)	Croatia
	NAME, Universities of Glasgow & Strathclyde	UK
53	Centre of Maritime Technologies (CMT)	Germany
Δ	BALance Technology Consulting GmbH (BAL)	Germany
WEGEMT	WEGEMT	UK

The project is supported by the European Commission under the Growth Programme of the 6th Framework Programme. Contract No. FP6-031382

More information about the IMPROVE project can be found at the project website

http://www.improve-project.eu

Workshop is organised by:

Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia Centre for Advanced Academic Studies (CAAS), Dubrovnik, Croatia under requirements of:

Task 9.3 of IMPROVE Work Package 9.

Proceedings are in fullfilement of Deliverable D9.4:

'Synthetic report about conclusions of the workshop' with project and work package summaries and their conclusions presented and discussed at the workshop.

Additional CD with the conference papers and presentations is also prepared by UZ.

TABLE OF CONTENTS

IMPROVE PROJECT OVERVIEW

Design of Improved and Competitive Products using an Integrated Decision Support System for Ship Production and Operation 2

INVITED LECTURERS

Next Generation Ship Structural Design	29
Design for Performance	43

METHODS and TOOLS

Tools for Early Design Stage - Modules for the Structural Response and Load Calculations (WP3) $\,$

WP3: Load and Response Modules	60
New and Updated Modules to Performed Stress and Strength Analysis	61
Local and Global Vibration Modules	74
Assessment of Ultimate Strength at the Early Design Stage	82
Rational Models to Assess Fatigue at the Early Design Stage	87
Sloshing Module (Task 3.4) & STX Europe LNGC(Task 6.2)	91

Tools for Early Design Stage - Production, Operational and Robustness Modules (WP4)

Production, Operation and Robustness Module	118
Life Cycle Module	120
Production Simulation	130
Robustness Module	145
T4.1a-Maintenance/Repair database, T4.1b-Generalised Life Cycle Maintenance Cost /Earning model and T4.1b (updated) including a corrosion parameter	156
Tools for Early Design Stage - Integration and Tools	
Software Integration in the Context of the IMPROVE Project	167

Software integration in the Context of the IMPROVE Project	107
Tools Presentation: LBR-5	175
OCTOPUS and MAESTRO Software tools	194
ConStruct Platform for Conceptual Structural Design	220

APPLICATION CASES

Product Presentation: LNG Carrier (WP6)

LNG Carrier - Ship Owner requirements, markets & technical trends	230
LNG Carrier – General Ship Design	236
LNG carrier Structural design aspects	250
WP6 LNG CARRIER Structural Optimization	263
LNG – Tug collision	269
LNG carrier – new innovative product - achievements through project, conclusions	275
Product Presentation: ROPAX Ship (WP7)	
ROPAX Ship Owner requirements, markets and future trends	286
An Innovative ROPAX vessel	291
RoPaX- Structural design aspects	303
Product Presentation: Chemical Tanker (WP8)	
The IMPROVEd chemical tanker	329

IMPROVE PROJECT OVERVIEW

IMPROVE → 17 PARTNERS & 10 Countries

No.	IMPROVE PARTNERS	Short name	Country
1	University of Liege (ULG), ANAST - Coordinator	ANAST	Belgium
2	STX France , St. Nazaire – (Shipyard)	STX	France
3	Uljanik Shipyard (with USCS Software division)	ULJ	Croatia
4	Szczecin New Shipyard (Stocznia Szczecinska Nowa)	SSN	Poland
5	GRIMALDI GROUP (Operator)	GRIM	Italy
6	EXMAR (Operator)	EXM	Belgium
7	Tankerska Plovidba Zadar – (Operator)	TPZ	Croatia
8	Bureau Veritas (Classification Society)	BV	France
9	Design Naval & Transport – Spin-off (Design)	DN&T	Belgium
10	Ship Design Group	SDG	Romania
11	MEC Insenerilahendused OÜ (Engineering)	MEC	Estonia
12	Helsinki University of Technology	ткк	Finland
13	University of Zagreb	UZ	Croatia
14	Universities of Glasgow and Strathclyde	NAME	UK
15	Center of Maritime Technologies	СМТ	Germany
16	BALANCE (Engineering & Soft.)	BAL	Germany
17	WEGEMT (Inter Org.)	WEG	UK

Improve

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

1- Design of Improved and Competitive Products

2- Integrated Decision Support System

→RDMM	= Rational Decision Making Methods
→DSP	= Decision Support Problem

Three basic tasks are planned:

- (A) Procedure for generation of Pareto frontier for ship design and ship structural design,
- (B) Subjective decision making procedure and
- (C) Application of the procedure to three products.

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

Ship Production and Operation

- Production Cost model
- Maintenance and operational Cost Model in relation with the active design variables (structures)
 How to improve the ship structure to reduce unplanned operational breakdown

(reparation,)?

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

<section-header><section-header><section-header><section-header><section-header><section-header><image><section-header><image><image><image><image><image><image><image><image><section-header><image><section-header><image><image><image><image><image><section-header><image><image><image><section-header>

c- Fatigue assessment at early design stage

c) The Fatigue module

EU FP6 project IMPROVE-Final Conference IMPROVE 2009, Dubrovnik, CROATIA, 17-19 Sept. 2009 19

LNG designs – optimization

LBR-5 least cost optimization results

Design	Standard		Free ballast	
	Initial scantling			
Mass [tons]	1840.44		184	5.70
Cost [M€]	3.16 3.13		.13	
	Optimized scantling (only sloshing constraints)			
Mass [tons] / Gain	1694.98	7.90%	1714.55	7.10%
Cost [M€] / Gain	3.00	5.25%	3.04	3.06%
Normalized scantling (sloshing and fatigue cons				onstraints)
Mass [tons] / Gain	1709.76	7.10%	1724.73	6.55%
Cost [M€] / Gain	3.06	3.14%	3.07	2.09%

- indirect weight gain
- the values correspond to a half of tank
- more severe loading conditions imposed to "Free ballast" design

Improve

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

INVITED LECTURERS

IMPROVE Final Workshop Invited Lecture

Next Generation Ship Structural Design

Dr. Owen F. Hughes Virginia Tech Blacksburg, Virginia USA

September 17, 2009

IMPROVE Project/Team Acknowledgement

- Appreciate the opportunity to speak to this gathering
- IMPROVE represents the very best in ship design innovation
- Technology advances are very evident in IMPROVE technical results

Overview

- Historical Perspective
- Ship Structural Design Evolution
- 'Next Generation Ship Structural Design' Requirements
- Improved Integration with Overall Ship Design Process
- Design of Higher Performance Structures
- Summary

Historical Perspective

- Today's approaches have roots in 1970's
- Technologies emerged to support improved design process
- Finite Element Analysis
- Structural Limit State Evaluation
- Optimization Methods
- Computers

Historical Perspective

- Today's approaches have roots in 1970's
- Technologies emerged to support improved design process
- Finite Element Analysis
- Structural Limit State Evaluation
- Optimization Methods
- Computers

Unified Approach for Rationally-Based Ship Structural Design

Six Elements of Rationally-Based Ship Structural Design

Key Structural Performance Parameters:

- Higher performance structures reduced weight with higher degrees of safety and reliability
- Lower fabrication costs
- Better economic performance in terms of lower contribution to light ship and hence larger payload fractions
- Reduced structural maintenance costs over the life-cycle
- Recognition of social responsibility in terms of environmental protection, collision/damage tolerance, reduced risk of failure, etc.

Physics-Based Computer-Aided Engineering Needs to Occur Early in the Design Process

Improved Integration with Overall Ship Design Process

- A ship design is now routinely developed using a surface model
- The surfaces represent hull and major decks and bulkheads
- The surface model also serves as a *Topology Model* that organizes the three dimensional spaces of the ship
- The surface model defines the purposes of the spaces and the relationships between the spaces
- This advanced Topology Model becomes the master 'organizer' of a ship design
- A challenge for CAE models and analyses is to have a functional linkage or relationship with the master *Topology Model*

 Automated generation and updating of structural models in response to changes in ship hull form, and deck and bulkhead arrangements

 Spawning/automating multiple structural analysis models (including different detail levels of finite element models) from the parent structural object model

analyses and different tools, such as Dynamic Load Approach, Spectral Fatigue Analysis, Underwater Shock, and forced vibration

 Structural optimization to refine and improve the structural performance and meet design requirements and objectives

Improved Integration with Overall Ship Design Process

Flowchart of Integrated Structural Analysis

Special Purpose Analyses Example: Extreme Load Analysis and Spectral Fatigue Analysis

Ship Structure Design Synthesis

Summary and Conclusions

- Next generation ship structural design tools and methods must further unify structural design process sub-elements into a more efficient and higher fidelity process
- Goal is to achieve both engineering integrity and optimized performance for the owner/operator
- Advances in design tool architecture, geometry and topology modeling, loads analysis, and structural evaluation must be better unified
- The degree of complexity of ship structural design continues to grow, driven by the results of scientific development coupled with the ever-competitive environment of ship owners and operators

Summary and Conclusions

- The vision of next generation ship structural design requires more complete unification with both the basic ship topology design and with the multiple aspects of ship loading and structural design
- Decision support technologies and methods are here to stay and are becoming more widely applied and accepted. Next generation structural design will depend more on these technologies to effectively explore the design space and generate the best designs for ships of tomorrow.

Impact Area	Technology Drivers	Goal	Indicator
Construction	Design Concept Standard Solutions Modular Construction Supplier Networking	Construction Efficiency	Building cost [USD / Payload unit]
Payload Functions	Payload Capacity Speed & Power Cargo Units Cargo Handling	Transport Capacity	Money making potential [RFR]
Ship Functions	Hull Form Propulsion Solution Fuel Type & Consumption Heat Recovery	Propulsion Efficiency	Bunker cost [USD / Year] Carbon Footprint [CO2 / ton• nm]
	Navigation Machinery Operation Docking & Mooring	Automation	Crew cost [USD / Year]
	Planned Maintenance Preventive Maintenance Condition Monitoring	Reliability	Keep schedule Time saving
	Fire prevention Grounding prevention Collision Prevention	Safety	Casualties Insurance cost Repair & replacement cost
Social Values	Smoke, NOX, SOX Waste, Sewage, Ballast Wake & Noise Recycling & Scrapping	Environmental Friendliness	Health Risk Environment fees & fines Disposal cost

	EEDI = Energy Efficiency Design Index = $\frac{\sum C_{F} \cdot SFC \cdot P}{Capacity \cdot V_{ref}}$	
C _F =	Non-dimensional conversion factor between fuel consumption measured in g and CO_2 emission also measured in g based on carbon content (C_F = approximately 3.1).	
SFC =	Specific fuel oil consumption for the engine in g per kW per hour.	
Vref =	Ship speed, measured in nautical miles per hour (knot), on deep water in the maximum design load condition (scantling condition) at 75 % of the maximum output of the engine(s) and assuming the weather is calm with no wind and no waves	
Capacity =	Deadweight in tonnes for container ships, bulk carriers, tankers, gas tankers, and general cargo ships. For passenger ships capacity is defined as the ships Gross Tonnage, GT, as such ships are more 'volume carriers' instead of 'deadweight carriers'.	
P =	Engine power in kW which shall include both the main engine power for propulsion (75 per cent MCR) and the auxiliary engine power for other purposes. The latter is interpreted as the power used on a daily basis and shall be estimated as 3 to 5 per cent of the main engine power, no matter how much auxiliary engine power is actually installed. For main engine power of 10 000 kW or above the auxiliary power is defined as: $0.025 P_{prop} + 250 kW$ For main engine power of less than 10 000 kW the auxiliary power is defined as: $0.050 P_{prop}$	
Pprop	Total installed main engine propulsive power in kW.	

<image><image>

Kai Levander 2009-09-18

SeaKey Naval Architecture

ecture 25

METHODS and TOOLS

Tools for Early Design Stage - Modules for the Structural Response and Load Calculations (WP3)

IMPROVE

WP3: LOAD & RESPONSE MODULES

(UZ)University of Zagreb, Zagreb, Croatia (WP leader) (ANAST) University of Liège, Liège, Belgium DN&T, Liège, Belgium

MEC-Insenerilahendused , Talin, Estonia (TKK)Helsinki University of Technology, Helsinki, Finland (BV) Bureau Veritas, Neuilly-Sur-Seine, France (NAME) Universities of Glasgow and Strathclyde, Glasgow, Scotland, UK

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

WP 3: The overall objective

•To **develop**, **update and validate missing calculation modules** that will be integrated with the core design tools (LBR5, OCTOPUS, CONSTRUCT) through integration tasks.

•The load and response calculation modules, corresponding to the design problem and design methods previously identified, form the core of the design feasibility control of the entire IMPROVE approach.

•They must be streamlined **to fit the synthesis methods** with specific requirements (fast execution for multiple optimizations runs).

•They may also be relaxed to fit tolerances of the concept design phase.

•Testing of the fulfillment of tolerances for the fast optimization process to **be used for the application cases** (in WP6 to WP8).

Improve

WP3 tasks:

TASK 3-1: Modules to perform stress and strength analysis atTask 3.1a Modules for stress analysis modules

Task 3.1b Vibration modules

TASK 3-2: Modules to assess ultimate strength

TASK 3-3: Modules to assess fatigue

TASK 3-4: Models to assess design loads (hydrodynamic loads,

sloshing, ...) and accidental loads (crashworthiness)

Deliverable contains three groups of activities:

- A) Development of fast and efficient equivalent modeling modules for the concept design. Modules developed enable efficient calculations of: 1) corrugated bulkhead, 2) cofferdam and 3) double bottom structures.
- **B)** Verification and validation of the existing response modules, including their improvements. New design procedure for multideck ships, based on generic ship models was introduced. Structural feasibility module according to BV Rules was developed.

C) Development and improvements in the optimization modules

Improve

A1) FE modeling of equivalent corrugated bulkhead

•Through this sub-task the development and validation of **eight-node isoparametric shell finite element** for corrugated bulkhead was carried out by UZ and was incorporated into OCTOPUS software.

Developed through introduction of anisotropy into plane shell isoparametric FE. Anisotropy for membrane and plate stress state is discussed separately.

Constant thickness property equal to the bulkhead thickness, while the influence of the corrugation is taken through Young's modules in both directions (considering sectional scantlings of the half wave of corrugation).

Improve

<u>A2)</u> Development of a equivalent double bottom element for the LBR-5 software

Through this sub-task the development and validation of the double-hull element was preformed taking into account the **additional stiffness brought by the double-hull web frames as well as the link they constitute between these web frames and the double-hull plating** (inner hull and outer hull).

A2) Development of a equivalent double bottom element

Analytical formulation is based on differential equations of "stiffened panel"

The methodology is validated with respect to FEM.

> The optimization using "double-hull" element requires significant computation time. It's necessary to reduce this computation time. This topic will be the main goal of future work.

The development of an additional constraints on web frame thickness in order to prevent their buckling will be also one of the future tasks.

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

A3) Development of Equivalent Modeling of cofferdams for LBR-5

Through this sub-task the development and validation of **modeling of cofferdams using LBR-5** software is presented.

It enables better coordination's between longitudinal and transverse structure optimization.

Development done in this chapter is only focusing on the problem of LNG cofferdam structure.

A3) Development of Equivalent Modeling of cofferdams

CONCLUSIONS:

The stresses obtained in the symmetry axis with LBR5 are in average 15-20% higher than the FEM solution for the two load cases.

The differences are due to several reasons, including the LBR5 geometry and scantlings approximations and the differences between the two considered methods for the analysis.

The differences at the extremities are influenced by the boundary conditions and the rectangular shape used by the LBR5 model.

B1) Modules for **the longitudinal strength** calculation have been examined and improved.

Method is based on the **extended beam theory with shear flow** calculations.

The **comparison** between 2D OCTOPUS/LBR-5 and 3D FE models was carried out on the RoPax and LNG structure as an examples.

B2) Module for the **transverse strength calculation** has been examined.

Method is based on the different types of specially developed FE (macroelements: bracket beam element, stiffened Q8 elements, etc.)

The comparison of transverse beams normal stress between 2D OCTOPUS and 3D FE models of RoPax structure for symmetric and asymmetric load case was carried out.

Improve

B1-2) Validation –longitudinal and transverse stress

Accuracy regarding longitudinal stresses found to be **satisfactory** compared to 3D FEM model **for the purpose of concept design(bellow 5%)**.

Analytical formulaton of secodary stresses (due to grillage bending) were introduce and validate. The differences found in distributions of secondary longitudinal stresses are acceptable.

The total **normal stresses in beams flange (axial+bending) in 2D models are larger (up to 15% in racking case)** than in MAESTRO model which is acceptable for the concept design phase.

Sensitivity analysis due to horizontal spring influences were investigated for inclined load condition.

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

Test Example: CRUISE SHIP

• Over superstructure decks differences bellow 7%.

• Over lower hull decks structure differences bellow $15\% \rightarrow$ error increase with distance from the midship due to the differences in the hull form modeling.

DEVELOPMENT OF A DISCRETE OPTIMIZATION MODULE IN THE LBR-5 SOFTWARE

- The LBR-5 considers only real variables to perform optimization.
- Some variables take integer values (plate thickness) or values chosen within a specified set (standard stiffeners).
- The LBR-5 solver doesn't comply with the discrete nature of such variables. This implies a post processing phase in which the designer has to round off the non-integer values, which usually reduces the benefit.
- To avoid this, **new optimization method is developed to consider the discrete nature of the design variables**. A model and a heuristic procedure have been formulated to add a discrete optimization module in LBR5.
- The algorithm has been implemented and executed with realistic ship structures. It provides very satisfying results, that are better than those obtained in the industry by manual rounding.

DEVELOPMENT OF A MULTI-STRUCTURE MODULE IN THE LBR-5 SOFTWARE

Purpose : To optimize simultaneously various sub-structures which share some common design variables, instead to optimize them separately (for example: cofferdam and tank)

CONCLUSIONS:

Extensive theoretical models development and validation were preformed. The results are acceptable for the concept design phase and suitable for optimization purpose.

Finally, **newly developed modules**, integrated in existing design tools (OCTOPUS, LBR-5, CONSTRUCT) were extensively used in application cases to ensure rational structural design and improvement of vessels designed (LNG, ROPAX and TANKER).

		F	Results				
Mode No.	Vibrations in water (freq. Hz)						
	VIBHULL	COSMOS/M	Diff.(%)				
1-vert.bend.	0.86	0.75	12.79				
2-vert.bend.	1.94	1.68	13.40				
3-vert.bend.	3.26	2.88	11.65				
1-horiz.bend.	2.56	2.41	5.85				
2-horiz.bend.	6.42	6.01	6.38	FEM 3D model (COSMOS)			
3-horiz.bend.	12.36	11.02	10.84	、 , , , , , , , , , , , , , , , , , , ,			
1-torsion	-	-	-				
First vertical modal shape (COSMOS)							
			Fi	rst torsional modal shape (COSMOS)			
Second verti	cal modal shap	be (COSMOS)					
Improve	IMPR	OVE Final Worksho	p, September	2009, Dubrovnik, Croatia			

Conclusions

- 1. Local vibrations module
 - validated for beam structures and stiffened panels by FE results
 - clamped, simply supported and free boundary conditions on sides
 - reasonable CPU time (60 s 1100 dof, 7.30 min. 4400 dof)
 - Imitation on the method (beam modeling)
 - reasonable dimensions of structural elements of the stiffened panel
 - compatibility structural verification system

2. Global vibration module

- vibrations in air and water (partially immerged)
- validation by FE results
- very small CPU times (< 2 s)</p>
- limitation on the method (beam modeling)
- non-concomitant solutions

mprov

Background

The implementation of task 3.2 should provide bases for selection of relevant tools for ultimate strength assessment in early design stage.

In early design stage, only main structural components are defined in general level. Actual topology and dimensions of those components are still subject to significant alterations.

In early design stage

•Detailed three-dimensional finite element modelling is not practical

•In the case of optimization process semi-analytical methods offer advantages over finite element analysis.

Objectives

Main requirements for method

•The method has to be time-efficient and suitable to analyse different design alternatives in early design stage.

•Despite the requirement of simplicity, for precise assessment the method could include the possibility to count for:

-influence of large shear forces

- reduction of hull girder ultimate strength due to low shear stiffness of some elements such as bulkhead or deck. (ship hull crosssection will not remain planar in bending)

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

stiffness.

• Beams are connected by distributed springs, which transfer vertical forces and longitudinal shear forces between the beams.

• The behaviour of each beam is described with Smith type approach

(Smith method is based on assumption that the beam cross-section remains planar in bending)

Improv

Conclusions

The intense validation of MS and CB-approaches against FE-approach is accomplished, accuracy and limitations are given

•For MS-method a single cross-section is considered in analyses

• CB-method the structural behaviour of hull girder can be estimated well up to the ultimate load level. However, the ultimate strength will be overestimated

· For both methods the transverse strength is hard to consider

Accuracy of MS-method

-for single deck ships up to 3%

-for multi-deck ships 1-21%

Accuracy of CB-method

-for single deck ships up to 10%

-for multi-deck ships 2-45%

Improv

IMPROVE WP3 T3.3

Rational models to assess fatigue at the early design stage

H. Remes, M. Liigsoo Helsinki University of Technology, Espoo, Finland A. Amrane ANAST University of Liège, Liège, Belgium I. Chirica, V. Giuglea, S. Giuglea Ship Design Group, Galati, Romania

Summary

Task 3 provides:

- An approach for fatigue assessments at early design stage
 - Generic structural elements with pre-defined fatigue critical locations
 - Analytical formulas for fast analysis of notch stresses
- Procedure for implementation of the approach to product development in WP 6, 7 and 8
 - Linkage to existing design tools with the help of Generic structural elements
 - Stand-alone executable file called Fatigue module

Contents:

- 1. Objective of the WP3 Task 3.4
- 2. BV Sloshing Methodology for Membrane LNGC
- 3. WP3 Task 3.4 Sloshing Module
- 4. WP6 Task 6.2 STX Europe LNGC ⇒ Conventional & Partial Fillings
- 5. Validation of OpenFOAM for Sloshing Academic Cases
- 6. References

WP3 – Task 3.4 – Sloshing Module

INPUT:

Cargo Containment System: Membrane Type

MEMBRANE LNG CONTAINMENT SYSTEMS - GTT N0 96, Mark III, CS1

Hydrodynamic Analysis

- Generate response of tank liquid by wave-induced ship motion
- Frequency & Time-domain 6 d.o.f. motion → SLOSHING EXCITATION

► HOW ?

BASIN MODEL TESTS HYDRODYNAMIC COMPUTATION

BV HYDROSTAR

Liquid Motions Analysis

BV sloshing model tests (in cooperation with ECN)

BV - Improve, Dubrovnik, 17-18 September 2009

Liquid Motion Analysis: **Sloshing Model Tests & Numerical Simulation**

General procedure :

State of the art of sloshing analysis relies on small-scale sloshing model tests supported by extensive developments of CFD computation techniques, commonly studying one isolated tank submitted to the forced motion without their mutual interaction

SLOSHING MODEL TESTS

NUMERICAL SLOSHING SIMULATION

BV - Improve, Dubrovnik, 17-18 September 2009

14

Liquid Motion Analysis: Sloshing Model Tests • Scaling Laws ?

PROTO

425 - 4

3×107

7.25×1

13 dyn

1700 m

FLUID FLOWS ARE CONSIDERED **IDENTICAL WHEN MATCHING:**

1. Same kinematics and dynamics (velocity and pressure fields)

PHYSICAL PROPERTY:

Kinematic viscosity

Compressibility

Surface tension

Celerity of sound

Density

- 2. Same boundary and initial conditions (geometry)
- 3. Same dimensionless numbers based on their physical properties

MODEL

1000 kg/m³

 $1 \times 10^{6} \text{ m}^{2}/\text{s}$

74 dyne/cm

1500 m/s

4.8 ×10⁻¹⁰ m²/N

INERTIA / GRAVITATION FORCE	\$	FROUDE NUMBER	$\Gamma_n = \frac{1}{\sqrt{gD}}$
INERTIA / COMPRESSIBILITY FORCE	ф	CAUCHY NUMBER	$C_a = \rho \gamma U^2$
INERTIA / ACOUSTIC FORCE		MACH NUMBER	$M_{-} = \frac{U}{-}$
			C C
INERTIA / VISCOUS FORCE	•	REYNOLDS NUMBER	$R_n = \frac{UD}{V}$
			v
INERTIA / SURFACE TENSION	\$	WEBER NUMBER	$W_e = \frac{\rho D U^2}{\sigma}$
INERTIA / VAPOR PRESSURE	\$	CAVITATION NUMBER	$\varsigma = \frac{P_0 - P_v}{\frac{1}{2}\rho U^2}$
GAS / LIQUID DENSITY	\$	DENSITY RATIO	$\frac{\rho_{gas}}{\rho_{liq}}$
	INERTIA / GRAVITATION FORCE INERTIA / COMPRESSIBILITY FORCE INERTIA / ACOUSTIC FORCE INERTIA / VISCOUS FORCE INERTIA / SURFACE TENSION INERTIA / VAPOR PRESSURE GAS / LIQUID DENSITY	INERTIA / GRAVITATION FORCE ↔ INERTIA / COMPRESSIBILITY FORCE ↔ INERTIA / ACOUSTIC FORCE ↔ INERTIA / VISCOUS FORCE ↔ INERTIA / SURFACE TENSION ↔ INERTIA / VAPOR PRESSURE ↔ GAS / LIQUID DENSITY ↔	INERTIA / GRAVITATION FORCE ↔ FROUDE NUMBER INERTIA / COMPRESSIBILITY FORCE ↔ CAUCHY NUMBER INERTIA / ACOUSTIC FORCE ↔ MACH NUMBER INERTIA / VISCOUS FORCE ↔ REYNOLDS NUMBER INERTIA / SURFACE TENSION ↔ WEBER NUMBER INERTIA / VAPOR PRESSURE ↔ CAVITATION NUMBER GAS / LIQUID DENSITY ↔ DENSITY RATIO

BV - Improve, Dubrovnik, 17-18 September 2009

Liquid Motion Analysis: Numerical Simulation • CFD • VOF Mesh Improve VOF MESH - 3D VIEW TRANSVERSE SECTION LONGITUDINAL SECTION HOT-SPOT ZONES 746 Z05 FLOW3D[®]

BV - Improve, Dubrovnik, 17-18 September 2009

16

Liquid Motion Analysis: CFD • Main Considerations ?

- Pressure calculated in each cell of VOF mesh DOES NOT CONSIDER IMPACT PRESSURE
 - Impact pressure is strongly related to both, liquid and gas compressibility and hydroelasticity effects. None of these effects is taken into account in actual CFD model.
 - Impact pressure peak is also associated to the pressure wave propagation through the fluid and stress wave propagation through the containment system. Such complex phenomena may be numerically simulated using much more refined mesh and computation time-step.
- ► For all these reasons, we prefer to EVALUATE KINETIC ENERGY of the liquid and "quantify" impact only by:

Quasi-static pressure

• Impact velocity with associated angle relative to the wall and geometry of the jet before the impact.

BV – Improve, Dubrovnik, 17-18 September 2009

17

Representative Design Pressures (Example)

Quasi-static pressures loads Pw (for standard fillings) to be applied on the inner hull structure supporting the membrane cargo containment system (Example).

Application

- ► To run the sloshing module executable, type:
 - sloshing_loads_improve.exe

Input File: input_tkref.txt (file's name & format fixed)

The executable sloshing_loads_improve.exe reads the input file input_tkref.txt:

input_tkref.txt - Bloc-notes	
Fichier Edition Format Affichage ?	
To be Labor Forma Annuage ? Ship Cargo Capcity in [m3] 135000.0 yumber of Tanks 4 The tank with biggest capacity with furthest location relative to the COG is considerd as the tank of reference Cargo capacity of the reference tank in [m3] 33963.0 Length of the reference tank in [m] 40.000 40.000 40.000 40.000 40.000 40.000 50.0000 50.0000	
	~

BV – Improve, Dubrovnik, 17-18 September 2009

Output File: sloshing_loads.txt (1)

27

Coordinates of the vertices which compose the tank panels

hier Edition Format Affichage ?	
e ship's cargo capacity is equal to 135000.00 m3. e cargo capacity belongs to this range [120000:140000]m3 of cargo capacity.	^
ordinates of the vertice n' 1 $\{x,y,z\} = \{0,0,0,0,0,0,0,0\}$ ordinates of the vertice n' 2 $\{x,y,z\} = \{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,$	
ordinates of the vertice n' 17 $(x,y,z) = (13.3, 14.4, 0.0)$ ordinates of the vertice n' 18 $(x,y,z) = (13.3, 18.0, 7.0)$ ordinates of the vertice n' 19 $(x,y,z) = (13.3, 18.0, 7.0)$ ordinates of the vertice n' 20 $(x,y,z) = (13.3, 18.0, 6.6)$ ordinates of the vertice n' 21 $(x,y,z) = (13.3, 18.0, 6.6)$ ordinates of the vertice n' 22 $(x,y,z) = (13.3, 18.0, 6.6)$ ordinates of the vertice n' 22 $(x,y,z) = (13.3, 18.0, 7.0)$ ordinates of the vertice n' 22 $(x,y,z) = (20.0, 18.0, 3.6)$ ordinates of the vertice n' 22 $(x,y,z) = (20.0, 18.0, 3.6)$ ordinates of the vertice n' 25 $(x,y,z) = (20.0, 18.0, 7.0)$ ordinates of the vertice n' 27 $(x,y,z) = (20.0, 18.0, 6.6)$ ordinates of the vertice n' 27 $(x,y,z) = (20.0, 18.0, 6.6)$ ordinates of the vertice n' 28 $(x,y,z) = (20.0, 18.0, 6.6)$ ordinates of the vertice n' 28 $(x,y,z) = (20.0, 18.0, 6.6)$	
ordinates of the vertice n' 29 (x,y,z)= (13.3, 6.4, 26.0) ordinates of the vertice n' 30 (x,y,z)= (13.3, 0.0, 26.0)	

Output File: sloshing loads.txt (2)

- Connectivity of panels discretizing the tanks walls
- ▶ Representative design pressure on stiffeners and platings for structural verification according to BV Rules on each panel:

Fichier Edition Forma	t Affichage	2	-		_				-	-	_		-
The sloshing	loads ar	e gi	ven	for	one q	uarter	of t	ie t	ank	for	symetry	reasons.	1
Quasi-static	pressure	for	the	cof	ferda	m bulki	lead:						
or the panel	composed	of	the	fo]]	owing	vertic	es	L	2	6	5		
W1 (kN/m2) =	160			1.11							-		
or the panel	composed	OF	the	TOIL	owing	vertie	es	e:	3	4	1	0	
W1 (KN/M2) =	18Z	of	the	fo11	audina	vertie	ar			10			
pwi $(kN/m2) =$	120	0.	ene		oning				÷.,	10			
for the panel	composed	of	the	fol1	owing	vertie	es	8	9	13	12		
owi (kN/m2) =	120												
for the panel	composed	of	the	foll	owing	vertie	es	9	10	11	16	15	
wi (kN/m2) =	240												
or the panel	composed	ot	the	toll	owing	vertie	es 1	2	13	15	14		
WT (KN/m2) =	240												
Quasi-static	pressure	for	The	100	er ch	anfer:							
For the panel	composed	of	the	foll	owing	vertic	29	2	17	18	4		
owi (kN/m2) =	182												
for the panel	composed	of	the	foll	owing	vertic	es 1	7	23	24	18		
pwi $(kN/m2) =$	180												
		£	al.			1.							
Quasi-static	pressure	TOF	the	£011	e war	Vartie	ar		10	10	7		-11
wi (kN/m2) =	182	01	che	1011	owing	veren	.05	*	10	12			
for the panel	composed	of	the	foll	owing	vertie	es	7	19	20	10		
owi (kN/m2) =	120												
for the panel	composed	of	the	foll	owing	vertie	es 1	2	20	21	11		
W1 (kN/m2) =	240			4-17	and a second					20	10		
or the panel	composed	OT	the	TOIL	owing	vertie	es 1		24	25	19		
For the nanel	composed	of	the	fall	ouring	vertie	ar 1		25	26	20		
owi $(kN/m2) =$	120	0.	une		oning				~	20	20		
for the panel	composed	of	the	foll	owing	vertie	es 2)	26	27	21		
wi (kN/m2) =	240												
August		6	*1		-								- 18
Quasi-Static	pressure	TOP	the	f upp	er ch	anrer:	ar i	6 3	21	22	16		
or the panel	240	01	rue	1011	owing	vertu	es 1	5	21	22	10		
For the nanel	composed	of	the	foll	owing	vertie	PC 29	1	27	28	22		
pwi (kN/m2) =	240	01	une	1011	uning	vertin	.03 4		41	20	44		
	. Section .												
Quasi-static	pressure	for	the	cei	ling:	1927/2021	18.12		-	0.000	1222		
or the panel	composed	of	the	toll	owing	vertie	es 1	5	22	30	14		
W1 (KN/m2) =	240	of	the	6.11	andra	vertie	ac 2	,	20	21	20		
(kN/m2) =	210	or	ure	1011	owing	vertie	es z	2	20	31	29		
For the nanel	composed	of	the	foll	owing	vertie	AS 2		31	32	30		
owi (kN/m2) =	170	1			- ing			S 8			- *		
	1000												1

BV - Improve, Dubrovnik, 17-18 September 2009

Structural Calculation

The assessment of inner-hull structural members is carried out using BUREAU VERITAS Rule criteria ([4]) and Guidelines for structural analysis of membrane LNG Carriers ([5]) against quasi-static pressure loads Pw (kN/m2) obtained from sloshing computations presented in this report.

Plating

- A yielding assessment is to be carried out. No buckling assessment is requested.
- The net thickness of the plating is to be assessed using the formula given in Pt B, Ch. 7, Sec1, 3.5.1 of BUREAU VERITAS Rules [4].
- Partial safety factors Psf are to be taken from the Table 1 of Pt. B, Ch. 7, Sec. 1, column sloshing.

Stiffeners

- A yielding assessment is to be carried out. No buckling assessment is requested.
- The net section of the stiffeners, including longitudinal, is to be assessed using the formula given in Pt B, Ch. 7, Sec2, 3.7.3 and 3.7.4 of BUREAU VERITAS Rules [4].
- Partial safety factors Psf are to be taken from the Table 1 of Pt. B, Ch. 7, Sec. 2, column sloshing.

BV - Improve, Dubrovnik, 17-18 September 2009

30

5. WP6.2 – STX Europe LNGC \Rightarrow Conventional & Partial Fillings

Numerical Simulations • R=10%H • W/Wo Trim

Numerical Simulations • R=95%H

6. Validation of OpenFOAM for Sloshing Academic Cases

Sloshing Calculations using Open Source CFD code : OpenFoam

- OpenFoam (mostly developed in Imperial College of London, 1990's) is available freely under GNU General Public License
 - The user can freely run, copy, distribute, study, change & improve the software
 - · Possibility to develop specific solvers
 - » New physical models, Better post-processing tools
- Interesting for industrials, shipyards & universities
 - Universities: flexible tools for research
 - · Shipyards: nor license fees neither constraints, tune the software for better productivity
- ▶ For Sloshing, necessity to validate with :
 - · Academic cases like 2D experiments
 - Comparisons with commercial code like Flow3D
 - Final report for end of June 2009

BV – Improve, Dubrovnik, 17-18 September 2009

40

BV - Improve, Dubrovnik, 17-18 September 2009

Bureau Veritas & Gas Carriers

- ▶ 1953:
 - Classification of the 1st modern pressurised LPG carrier built in Europe: M/S «KOSAN GAS».
- ▶ 1995:
 - The first membrane LNG carrier built in Korea
- ▶ 2005:
 - The worlds first LNG RV vessels
- ▶ 2006:
 - The worlds first diesel electric LNG carriers
 - The worlds first CS1 containment system

LNG References • Classification

Improve

LNG CARRIERS SURVEYED AND CLASSED WITH BUREAU VERITAS

		BV – Improve	, Dubrovnik, 17	-18 September	2009			48
	Newbuilding	IMI Taiwan	171,800m3	G196	4 IANKS	2010	PANAMA	
	EXAMPLAR (2272 REGAS)	EXMAR	151,000m3	GT 96	4 TANKS	2009	BELGIUM	
	EXPEDIENT (2271 REGAS)	EXMAR	151,000m3	GT 96	4 TANKS	2009	BELGIUM	
	EXQUISITE (2270 REGAS)	EXMAR	151,000m3	GT 96	4 TANKS	2009	BELGIUM	
	Newbuilding 2268	TMT Taiwan	171,800m3	GT 96	4 TANKS	2009	PANAMA	
	Newbuilding 2261	KOREA LINE	150,000m3	GT 96	4 TANKS	2008	PANAMA	
	EXPRESS (2263 REGAS)	EXMAR	151,000m3	GT 96	4 TANKS	2008	BELGIUM	
	EXPLORER (2254/REGAS)	EXMAR	151,000m3	GT 96	4 TANKS	2008	BELGIUM	
	EXCELERATE (2237/REGAS)	EXMAR	138,000m3	GT 96	4 TANKS	2006	BELGIUM	
	RAHEE (hull 2211)	PETRONET	138,000m3	GT 96	4 TANKS	2004	LIBERIA	
	DISHA (hull 2210)	PETRONET	138,000m3	GT 96	4 TANKS	2004	LIBERIA	
	LNG PIONEER (hull 2219)	MOL	138,000m3	GT 96	4 TANKS	2005	LIBERIA	
	EXCELLENCE (2218/REGAS)	EXCELARATE	138,000m3	GT 96	4 TANKS	2006	BELGIUM	
	EXCELSIOR (2208/REGAS)	EXMAR	138,000m3	GT 96	4 TANKS	2005	BELGIUM	
	GALICIA SPIRIT	TAPIAS / TK	140,500m3	GT 96	4 TANKS	2004	LIBERIA	
	HISPANIA SPIRIT	TAPIAS / TK	140,500m3	GT 96	4 TANKS	2002	LIBERIA	
	EXCEL (hull 2213)	EXMAR	138.000m3	GT 96	4 TANKS	2003	BELGIUM	
	EXCALIBUR	EXMAR	138.000m3	GT 96	4 TANKS	2002	BELGIUM	
	K FREESIA	KOREA LINE	138.000m3	GT 96	4 TANKS	2000	PANAMA	
DAEWOO	K ACACIA	KOREA LINE	138.000m3	GT 96	4 TANKS	1999	PANAMA	
	GAGLETS (Hull F32)	NIK/ ODF	133,300113	001	4 1700/0	2007	TRANCE	
	CASELVS (Hull D22)	NVK / CDE	153,500m3	CS 1	4 TANKS	2000	EDANCE	
	GAZ DE FRANCE ENERGY	CDF	152,000m3	081	4 TANKS	2006	FRANCE	
	LNG PORT HARCOURT	BGI	123,000m3	GT 85	6 TANKS	19//	BERMUDA	
	LNG LAGOS	BGT	123,000m3	GT 85	6 TANKS	1976	BERMUDA	
	RAMDANE ABANE	SONATRACH	126,000m3	GT 85	4 TANKS	1999	ALGERIA	
	MOURAD DIDOUCHE	SONATRACH	126,000m3	GT 85	4 TANKS	1999	ALGERIA	
AKER France	DESCARTES	GAZOCEAN	50,000m3	MARKI	6 TANKS	1971	FRANCE	

LNG References • Classification

LNG CARRIERS SURVEYED AND CLASSED WITH BUREAU VERITAS (continued)

HANJIN	HANJIN MUSCAT HANJIN SUR HANJIN PYEONG TAEK	HANJIN SHIP. HANJIN SHIP. HANJIN SHIP.	138,000m3 138,000m3 130,000m3	GT 96 GT 96 GT 96	4 TANKS 4 TANKS 4 TANKS	1999 2000 1995	PANAMA PANAMA PANAMA
IZAR	IVAN TAPIAS	TAPIAS / TK	140,500m3	GT 96	4 TANKS	2004	LIBERIA
KAWASAKI	LALLA FATMA N'SOUMER	SONATRACH	145,000m3	MOSS	4 TANKS	2004	ALGERIA
HHI ULSAN	Newbuilding	MOL	177,000M3	MK III	4 TANKS	2009	ТВА
HHI SAMHO	Newbuilding	MOL	177,000m3	MK III	4 TANKS	2009	ТВА
MITSUBISHI	ARCTIC LADY Hull nº 2222 Hull nº 2223	LEIF HOEGH MISC MISC	145,000m3 157,000m3 157,000m3	MOSS GT 96 GT 96	4 TANKS 4 TANKS 4 TANKS	2006 2008 2008	NORWAY MALAYSIA MALAYSIA
NORMED	EDOUARD LD MOSTEFA BEN BOULAID BACHIR CHIHANI	DREYFUS DREYFUS SONATRACH	130,000m3 130,000m3 130,000m3	GT NO 85 GT 85 GT 85	5 TANKS 5 TANKS 5 TANKS	1977 1977 1979	FRANCE FRANCE ALGERIA
DUNKIRK	TENAGA DUA (dual class) TENAGA TIGA (dual class) TENAGA SATU (dual class)	MISC MISC MISC	130,000m3 130,000m3 130,000m3	GT NO 88 GT NO 88 GT NO 88	5 TANKS 5 TANKS 5 TANKS	1981 1981 1981	MALAYSIA MALAYSIA MALAYSIA
LA CIOTAT	TELLIER BEN FRANKLIN (scrapped)	GDF GAZOCEAN	40,000m3 125,000m3	MARK I MARK I	5 TANKS 6 TANKS	1974 1975	FRANCE FRANCE
CH. SEINE	CINDERELLA	тмт	25,500m3	TYPE B	7 TANKS	1965	ST VINCENT

BV - Improve, Dubrovnik, 17-18 September 2009

49

LNG References • Classification

LNG CARRIERS SURVEYED AND CLASSED WITH BUREAU VERITAS (continued)

LA SEYNE	LARBI BEN M'HIDI	SONATRACH	130,000m3	GT 85	5 TANKS	1977	ALGERIA
	TENAGA EMPAT (dual class)	MISC	130,000m3	GT NO 88	5 TANKS	1981	MALAYSIA
	TENAGA LIMA (dual class)	MISC	130,000m3	GT NO 88	5 TANKS	1981	MALAYSIA
	HASSI R'MEL	SONATRACH	40,000m3	GT NO 82	6 TANKS	1971	ALGERIA
SAMSUNG	SERI ALAM (hull 1502)	MISC	145,000m3	MARK III	4 TANKS	2005	MALAYSIA
	SERI AMANAH (hull 1503)	MISC	145,000m3	MARK III	4 TANKS	2005	MALAYSIA
	SERI ANNGUN (hull 1589)	MISC	145,000m3	MARK III	4 TANKS	2006	MALAYSIA
	SERI ANGKASA (hull 1590)	MISC	145,000m3	MARK III	4 TANKS	2007	MALAYSIA
	SERI AYU (hull 1591)	MISC	145,000m3	MARK III	4 TANKS	2007	MALAYSIA
	MAERSK METHANE	AP MOLLER	164,500m3	MARK III	4 TANKS	2008	DIS
	Hull n°1608	AP MOLLER	164,500m3	MARK III	4 TANKS	2008	DIS
	Hull n°1625	AP MOLLER	164,500m3	MARK III	4 TANKS	2008	DIS
	Hull n°1626	AP MOLLER	164,500m3	MARK III	4 TANKS	2009	DIS
	Hull nº1632	AP MOLLER	164,500m3	MARK III	4 TANKS	2009	DIS
	Hull n°1633	AP MOLLER	164,500m3	MARK III	4 TANKS	2009	DIS
STX	New Building	ELCANO	173,600m3	GT NO 96	4 TANKS	2010	SPAIN
UNIVERSAL	Cheikh El Mokrani	SONATRACH	75,000m3	MARK III	4 TANKS	2007	BAHAMAS
	Cheikh Bouamama	SONATRACH	75,000m3	MARK III	4 TANKS	2009	BAHAMAS
REMONTOWA	New Building	A. VEDER	7,500 m3	TYPE C	2 TANKS	2009	NETHERLANDS
GENERAL	LNG ABUJA	BGT	126,500m3	MOSS	5 TANKS	1980	BAHAMAS
DYNAMICS	LNG EDO	BGT	126,500m3	MOSS	5 TANKS	1980	BAHAMAS
NEWPORT	LNG DELTA	SHELL	125,000m3	MARKI	5 TANKS	1978	ISLE OF MAN
NEWO							
NEWS							

BV - Improve, Dubrovnik, 17-18 September 2009

50

Dubrovnik, CROATIA, 17th-18th September 2009

Dubrovnik, CROATIA, 17th September 2009

Dubrovnik, CROATIA, 17th September 2009

Tools for Early Design Stage - Production, Operational and Robustness Modules (WP4)

Production, Operation and Robustness Module

J.D. Caprace, F. Bair ANAST University of Liège, Liège, Belgium M. Hübler Center of Maritime Technologies, Hamburg, Germany I. Lazakis, O. Turan NAME Universities of Glasgow & Strathclyde, Glasgow, United Kingdom K. Piric, V. Zanic, J. Andric, P. Prebeg, University of Zagreb, Zagreb, Croatia

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

- Introduction
- Life cycle assessment
- Production simulation assessment
- Robustness assessment
- Conclusion

3 MODULES

- A life cycle cost/earning of production and maintenance/repair
- A detailed Discrete Event Simulation (DES) for production and scheduling
- A design robustness of the structural solution related to various fabrication and operational parameters

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

Improv

Companies	Place	Dates	Ship type	No of shi
TPZ	Zadar, Croatia	21-26 October 2007	Tankers	16
XMAR	Antwerp, Belgium	3-7 February 2008	Pr. Tankers	5
MALDI	Naples, Italy	25-28 February 2008	Ch. Tankers	1
	Distributio	n of ship types] LPG	3
,	/		Bulk carriers	9
30- 25-	/		General cargo	30
20- 15-			Cargo vessels	25
5	1000	900000	Ropax	6
Tankers	Tanken Tanken LPO	and and and preserve poper and reserve	Passenger vessels	5
- Q	୍ଦ୍ 🚸	Cell Cell and		

LIFE CYCLE MODULE

· Attributes of repair events

	##	Ship type	Survey period	Age	LWT	Steel repair (kgs)	ARS/LWT (*10^-3)
-	62	LPG	1st Sp.	5	11,548	3000	0.2598
	63	LPG	2nd Sp.	10	11,548	1000	0.0866
	64	Cargo	Drydock			7,710	0.7226
	65	Cargo	Q ^A Astual I	Domloood	Staal /Lia	htmaight	0.2688
	66	Cargo	Actual	Replaced	Steel /Lig	ntweight	0.6351
	67	Cargo	Drydock			18,725	1.2022
	68	Cargo	Drydock	12	15,575	5,812	0.3732
	69	Cargo	Drydock	20	15,575	33,510	1.7321
	70	Cargo	Drydock	20	15,575	4,000	0.2068
	71	Cargo	Drydock	12	15,575	15,974	1.0256
	72	Cargo	Drydock	6	16,700	6,700	0.4012
	73	Cargo	Drydock	9	18,600	44,000	2.3656
	74	Cargo	Drydock	5	16,578	28,000	1.6890
	75	Cargo	Drydock	2	18,600	1,500	0.0806
	76	Cargo	Drydock	3	18,600	1,500	0.0806
	77	Cargo	Drydock	6	12,231	2,500	0.2044
	78	Cargo	Drydock	5	16,578	10,300	0.6213
	79	Cargo	Drydock	3	12,231	4,000	0.3270
	80	Cargo	Drydock	9	15,575	5,000	0.3210
	81	Tanker	4th Int.	23	13,939	145	10.4023
	82	Tanker	4th Int.	22	14,251	381	26.7350
ove		IMPRO	OVE Final Worksho	p, Septem	ber 2009, Di	ubrovnik, Croatia	

	L	IFE CY	CLE M	OD	ULE
• Att	ribut	es of una	availability	v eve	nts
	##	Ship type	Survey period	Age	Unavailability time (days)
	1	Pr. Tanker	Annual	3	24
	2	Pr. Tanker	Annual	4	13
	3	Pr. Tanker	1st Sp.	5	42
	4	Pr. Tanker	1st Int.	8	25
	5	Pr. Tanker	2nd Sp.	10	37
	6	Pr. Tanker	2nd Int.	13	31
	7	Pr. Tanker	3rd Sp.	15	44
	8	Pr. Tanker	3rd Int.	18	51
	9	Pr. Tanker	4th Sp.	19	7
	10	Tanker	Annual	3	18
	11	Tanker	1st Sp.	6	17
	12	Tanker	1st Int.	8	25
	13	Tanker	2nd Sp.	10	21
	14	Tanker	2nd Int.	13	30
	15	Tanker	2nd Sp.	10	20
	16	Tanker	Annual	2	16
	17	Tanker	Annual	1	14
	18	Tanker	1st Int.	3	14
	19	Tanker	2nd Int.	3	23
	20	Tanker	Annual	1	11
	21	Tanker	Annual	3	16
nprove		IMPROVE Final	Workshop, September 2	009, Dubrovr	nik, Croatia

Г	kesults c	of the I	llustrative	e exar	nple	
	Lightweight (in tonnes)	%δ	Scenario 1 M2 + M3 – M5 (DWT is constant)	%δ	Scenario 2 M2 – M4 – M5 (Δ is constant)	%δ
1	8,500	-10.53%	79,522,514	-0.41%	-378,717,768	3.11%
2	9,000	-5.26%	79,685,660	-0.20%	-372,997,550	1.56%
3	9,250	-2.63%	79,766,962	-0.10%	-370,137,442	0.78%
4	9,500 (base design)	0.00%	79,848,086	0.00%	-367,277,333	0.00%
5	9,750	2.63%	79,929,033	0.10%	-364,417,225	-0.78%
6	10,000	5.26%	80,009,804	0.20%	-361,557,116	-1.56%
7	10.500	10.53%	80,170,825	0.40%	-355,836,899	-3,11%

LIFE CYCLE MODULE

- Conclusions
 - The developed life-cycle maintenance/repair cost model is robust enough to be used within the IMPROVE's integrated search platform. That is to find maintenance/repair related cost/earning values for the three IMPROVE vessels with respect to design of experiments throughout the optimisation
 - The developed method can efficiently help designers, ship owners and production engineers to make rationale decisions during early design phases
 - Although the model is able to calculate generalized life-cycle maintenance cost, it can also be used for what if scenario analyses with respect to other parameters of the model, such as unit price of steel replacement per kg, price of fuel oil, and so on
 - This model can further be improved with the inclusion of other lifecycle cost elements

<section-header>

PRODUCTION SIMULATION

• COST and BUDGET assessment module

S	MU	LA	TIC	N	INP	U'	Г

Ship Name			Description Stage Units Ships Alternatives						
Sister Shine			M9	M10	M11	M12			
			M9A, M9B	M10A, M10B	M11A, M11B	M12A, M12B			
Design type			Standard	Free ballast	Free ballast	Free ballast			
Block Splitting strategy			800t	800t	1200t	1200t			
Scantling optimization			No	No	No	Yes			
Time frame between ships		Days	60	60	60	60			
Keelaying date of the first ship			1/04/2008	1/04/2008	1/04/2008	1/04/2008			
Number of blocks			70	70	43	43			
Number of section			174	174	172	172			
Number of joins			297	297	291	291			
Number of welds			1960	2097	1967	1967			
Volume of blocks		m³	268 856	269 567	269 567	269 567			
Volume of sections		m³	183 151	183 592	183 592	183 592			
Real weight of ship	(mid section)		32 064						
Weight (estimated)		tons	28 360	27 000	26 387	24 276			
Welding length	Block Erection	meters	13 797	12 054	10 001	9 975			
Welding length E	Block Assembling	meters	6 605	6 994	7 832	7 832			
Total length		meters	20 402	19 048	17 833	17 807			
Welding Budget	Block Erection	hours	34 340	35 988	24 328	24 151			
Preparation_Budget	Block Erection	hours	16 480	14 526	11 437	11 371			
Welding Budget E	Block Assembling	hours	15 984	15 572	25 995	24 384			
Preparation_Budget E	Block Assembling	hours	6 351	6 675	8 550	8 536			
Total_Budget		hours	73 155	72 761	70 310	68 443			

Results from budget calculation module and shipyard design

PRODUCTION SIMULATION

Table scenario and results

Description	Ships Alternatives						
Experiment	STX5		STX6		STX7		STX8
Ship Name	M9		M10		M11		M12
Sister Ships	M9A, M9B		M10A, M10B		M11A, M11B		M12A, M12B
Design type	Standard		Free ballast		Free ballast		Free ballast
Block Splitting strategy	800t		800t		1200t		1200t
Scantling optimization	No		No		No		Yes
Surface optimization	No		No		No		No
Budget		-1%		-3%		-3%	
Lead Time		23%		-10%		-29%	
Labour cost		-5%		29%		-7%	
Transport cost		0%		24%		-65%	
Surface utilization cost		-3%		-3%		-2%	
Total cost		28%		-5%		-31%	
Outfitting is not cons	sidered in the s	imulati	on	0/			

LBR5 labour cost assessment between M11 and M12 = -3.06%

PRODUCTION SIMULATION

<section-header><image><image><image>

SIMULATION INPUT

	Stage	Units	ULJ_1	ULJ_2	ULJ_3
Ship Name			R10	R11	R12
Design			Standard	Improved	Improved
Scantling optimization			No	No	Yes
Number of SuperSection			118	140	140
Number of Section			278	280	280
Number of SubSection			116	20	20
Number of Assembly			180	0	0
Number of SubAssembly			4478	4020	3990
Volume of SuperSection		mª	62639	39325	38242
Volume of Section		m³	65055	52770	51802
Volume of SubSection		mª	14469	9488	9488
Volume of Assembly		mª	2486	0	0
Volume of SubAssembly		mª	19136	20358	21047
Weight estimated		Tons	21196	20190	20834
Number of Activities			1384	880	880
Preparation_Budget	Assembly	Hours	2296	0	0
Welding Budget	Assembly	Hours	4186	0	0
Preparation_Budget	SubSection	Hours	15274	6700	6900
Welding Budget	SubSection	Hours	13610	12260	12620
Preparation_Budget	Section	Hours	30156	34560	34640
Welding Budget	Section	Hours	32020	40600	40740
Preparation_Budget	SuperSectio	Hours	17250	16144	16064
Welding_Budget	SuperSectio	Hours	14868	14344	14264
Total Budget		Hours	129660	124608	125228

Results from budget calculation module and shipyard design

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

PRODUCTION SIMULATION

PRODUCTION SIMULATION

Table scenario and results

Description		Ships Alternatives					
Experiment	ULJ1	ULJ1 U			ULJ3		
Ship Name	R10		R11		R12		
Sister Ships	R10_1, R10_2		R11_1, R11_2		R12_1, R12_2		
Design type	Standard		New		New		
Scantling optimization	No		No		Yes		
Budget		-4%		0.5%			
Lead Time		11%		0.0%			
Overall labour time		-65%		0%			
Transport cost		-99%		-0.2%			
Surface utilization cost		-100%		5%			

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

ROBUSTNESS MODULE

K. Piric, V. Zanic, J. Andric, P. Prebeg University of Zagreb, Zagreb, Croatia

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

Improv

Introduction

Robust means that the product or process performs consistently on target and is relatively insensitive to factors that are difficult to control.

Robust design has been developed with the expectation that an insensitive design can be obtained.

Genechi Taguchi's Method

Taguchi imposes a general quadratic loss function of the form:

$$L(y) = k \cdot (y - T)^2$$

He also suggests analyzing variation using an appropriately chosen signal-to-noise ratio.

Nam Pyo Suh's Method He uses information (I) and his Information Axiom provides a quantitative measure of the merit. The Information Axiom states that the design with the highest probability of success is the best design.

Experimental Design

Usual time and financial limitations preclude the use of a full factorial experiment.

Statisticians have developed efficient test plans, which are referred to as fractional factorial experiments (FFEs). FFEs use only a portion of the total possible combinations to estimate the main factor effects and some, not all, of the interactions.

Taguchi has developed a family of FFE matrices (orthogonal arrays) which can be utilized in various situations.

Signal to noise ratio (SNR)

SNR developed by Taguchi is performance measure to choose control levels that best cope with noise. Three of them are considered standard and are generally applicable in the following situation:

Smallest is best quality characteristic (contamination, weight, energy consumption and turn around time)

Nominal is best quality characteristic (dimension, control system such as steering and motor control)

➢Biggest is best quality characteristic (strength, yield, speed and cargo capacity)

mprov

Information (I)

Information may be expressed as:

$$I = \ln \frac{1}{Ps} = -\ln Ps$$

The logarithmic function is chosen so that the information will be additive when there are many criteria that must be satisfied simultaneously.

Robustness – module

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

Improve

Robustness – example

Robust design regarding structural safety

Example shows bottom panel robustness calculation for Ropax ship using experimental design with inner array (where user assigns controllable factors) and outer array (where user assigns uncontrollable-noise factors).

For that purpose, four different controllable and noise factors are selected, as follows:

All controllable and noise factors will be contemplate on three levels as is shown in tables:

	CONTROLI			
t _p	14	[mm]		
s	500	550	611	[mm]
h _w	240	270	300	[mm]
t _w	9	10	11	[mm]

	NOISE]		
σ_{x}	-85	-105	-146	[N/mm ²]
σ_y	-90	-98	-126	[N/mm ²]
τ	6	8	8.6	[N/mm ²]
р	120	130	140	[kN/m²]

Considering panel dimension the following feasibility criteria functions should be satisfied:

- □ SYCP Stiffener Yield Compression Plate
- □ SYCF Stiffener Yield Compression Flange
- □ PP_CB Plane Panel Compression and Bending
- □ PP_BACS Plane Panel Bi-axial Compression and Shear
- □ OS_VBM Ordinary Stiffener Various Buckling Modes
 - ➤ Column buckling
 - Torsional buckling
 - ≻ Web buckling

Improv

□ OS_US – Ordinary Stiffener Ultimate Strength

No of ships

MRCHITE MANA	CIURE Shid	Attributes of repair events					
* ENGIN	##	Ship type	e Survey period	Age	LWT	Steel repair (kgs)	ARS/LWT (*10^-3)
-	62	LPG	1st Sp.	5	11,548	3000	0.2598
	63	LPG	2nd Sp.	10	11,548	1000	0.0866
	64	Cargo	Drydock			7,710	0.7226
	65	Cargo	M A street	Damlaaa	d Chaol /T inl	transi alta	0.2688
	66	Cargo	Actual	Replace	a Steel /Ligh	itweight	0.6351
	67	Cargo	Drydock	_		18,725	1.2022
	68	Cargo	Drydock	12	15,575	5,812	0.3732
	69	Cargo	Drydock	20	15,575	33,510	1.7321
	70	Cargo	Drydock	20	15,575	4,000	0.2068
	71	Cargo	Drydock	12	15,575	15,974	1.0256
	72	Cargo	Drydock	6	16,700	6,700	0.4012
	73	Cargo	Drydock	9	18,600	44,000	2.3656
	74	Cargo	Drydock	5	16,578	28,000	1.6890
	75	Cargo	Drydock	2	18,600	1,500	0.0806
	76	Cargo	Drydock	3	18,600	1,500	0.0806
	77	Cargo	Drydock	6	12,231	2,500	0.2044
	78	Cargo	Drydock	5	16,578	10,300	0.6213
	79	Cargo	Drydock	3	12,231	4,000	0.3270
	80	Cargo	Drydock	9	15,575	5,000	0.3210
	81 🣥	Tanker	4th Int.	23	13,939	145	10.4023
Impr		Tanker	4th Int.	22	14,251	381	26.7350
· ·	IM	PROVE				NAME, Univer	sity of Strathclyde

AND MARKEN CLUB	Attribute	es of unavaila	bility	events	
##	Ship type	Survey period	Age	Unavailability time (days)	5
1	Pr. Tanker	Annual	3	24	
2	Pr. Tanker	Annual	4	13	
3	Pr. Tanker	1st Sp.	5	42	
4	Pr. Tanker	1st Int.	8	25	
5	Pr. Tanker	2nd Sp.	10	37	
6	Pr. Tanker	2nd Int.	13	31	
7	Pr. Tanker	3rd Sp.	15	44	
8	Pr. Tanker	3rd Int.	18	51	
9	Pr. Tanker	4th Sp.	19	7	
10	Tanker	Annual	3	18	
11	Tanker	1st Sp.	6	17	
12	Tanker	1st Int.	8	25	
13	Tanker	2nd Sp.	10	21	
14	Tanker	2nd Int.	13	30	
15	Tanker	2nd Sp.	10	20	
16	Tanker	Annual	2	16	
17	Tanker	Annual	1	14	
18	Tanker	1st Int.	3	14	
19	Tanker	2nd Int.	3	23	
20	Tanker	Annual	1	11	
	Tanker	Annual	3	16	
IMPRO	VE			NAME, University of Stra	thclyde

- Model 1: production cost
- Model 2: maintenance cost
- Model 3: fuel cost
- Model 4: operational earning
- Model 5: dismantling earning

Two different scenarios examined:

- Scenario 1: Deadweight constant
- Scenario 2: Displacement constant

NAME, University of Strathclyde

THAN MARINE ENGIN	UNIVERSITY O UNIVERSITY O UNIVERSITY O							
	Lightweight (in tonnes)	%δ	Scenario 1 M2 + M3 – M5 (DWT is constant)	%δ	Scenario 2 M2 – M4 – M5 (∆ is constant)	%δ		
1	8,500	-10.53%	79,522,514	-0.41%	-378,717,768	3.11%		
2	9,000	-5.26%	79,685,660	-0.20%	-372,997,550	1.56%		
3	9,250	-2.63%	79,766,962	-0.10%	-370,137,442	0.78%		
4	9,500							
	(base design)	0.00%	79,848,086	0.00%	-367,277,333	0.00%		
5	9,750	2.63%	79,929,033	0.10%	-364,417,225	-0.78%		
6	10,000	5.26%	80,009,804	0.20%	-361,557,116	-1.56%		
7	10,500	10.53%	80,170,825	0.40%	-355,836,899	-3.11%		

NAME, University of Strathclyde

Conclusions

- The developed life-cycle maintenance/repair cost model is <u>robust</u> <u>enough</u> to be used within the IMPROVE's integrated search platform. That is to find maintenance/repair related cost/earning values for the three IMPROVE vessels with respect to design of experiments throughout the optimisation
- The developed method can efficiently help designers, ship owners and production engineers to make <u>rationale decisions during early design</u> <u>phases</u>
- Although the model is able to calculate generalized life-cycle maintenance cost, it can also be used for <u>what if scenario analyses with</u> respect to other parameters of the model, such as unit price of steel replacement per kg, price of fuel oil, and so on
- This model can further be improved with the inclusion of other lifecycle cost elements

Tools for Early Design Stage - Integration and Tools

EU FP6 project IMPROVE-Final Conference IMPROVE 2009, Dubrovnik, CROATIA, 17-19 Sept. 2009 168

CORSAIRE 10000 : A FAST FERRY

Medium Size LNG Carrier

Medium Size LNG Carrier

The mesh model of the gas carrier includes:

✓41 stiffened panels with 9 design variables each,✓4 additional panels to simulate the sym. axis,

- \checkmark 278 design variables (5 to 9 variables per panel);
- ✓106 equality constraints between design variables, e.g., to impose uniform frame spacing for the deck, bottom and the side ballast tanks.
- \checkmark 203 geometrical constraints (about 5 to 6 x 41 panels).

For instance longitudinal web heights are limited by such constraints to control the web slenderness.

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

		Med	dium	Size	e LN(G Carrier
		SEAI (with co	RCH FO COST I ntinuous	R THE L DESIGN design va	EAST ariables)	
		Optimum Type	Number of Web- frames	SPACINGS Secondary Frames (Δ_C)	S Stiffeners (Δ_L)	Steps of the
	1- ALSTOM	MARS BV	N _W	$\Delta w/3$	Δ_L (Alstom)	Optimisation
	2- MET8 E00	Least Cost (*)	N _W	$\Delta w/3$	Δ_L (Alstom)	
	3- MET8 E90	Least Cost	N _W	$\Delta w/3$	1.15 Δ _L (*)	
	4- MET8 B90	Least Cost	N _W -3 (*)	$\Delta w/3$	1.15 Δ _L (*)	
	5- MET8 F90	Least Cost	NW -3	Δw/4 (*)	1.15 Δ _L (*)	1
	6- MET8 F	Least Cost	N _W -3	$\Delta w/4$	1.28 Δ _L (*)	
Imp	(*) Shov	vs the modi	fied parar	neter (or va	riable) bet	9, Dubrovnik, Croatia

SEARCH FOR THE LEAST COST DESIGN (with continuous design variables)									
		SPACINGS		Duct keel	LEAST C	OST	WEIGHT		
CONFIGU- RATIONS	Optimum Type	Number of Web- frames	· Second. · Frame (Δ c)	Stiffeners (AL)	bulk head. Plate Thick ness	COST SAVI (see 1	NG (%)	(%)	
	Shown c	hange(s)	between 2 s steps	uccessive		Between 2 successive steps	Cumulated s aving		
1-ALSTOM	MARS BV	Nw	$\Delta w/3$	Δ_L (Alstom)	100%	0.00%	0.00%	100% (ref)	Initial Design (use as reference)
2- MET8 E00	Least Cost	Nw	$\Delta w/3$	ΔL (Alstom)	105%	-1.39%	-1.39%	98.34%	
3- MET8 E90	Least Cost	Nw	Δw/3	1.15 Δl	105%	-2.46%	-3.85%	101.61%	
4- MET8 B90	Least Cost	Nw -3	$\Delta w/3$	1.15 Δl	130%	-6.40%	-10.25%	104.73%	plate thickness too large
5- MET8 F90	Least Cost	NW -3	∆w/4	1.15 Δl	100%	1.67%	-8.58%	103.42%	OPTIMUM SOLUTION
6- MET8 F	Least Cost	Nw -3	$\Delta w/4$	1.28 ∆l	100%	-0.53%	-9.11%	105.29%	(*) Poor efficiency
	(*) Stiffener spacing too large => cost savings of 0.5% but increased straightening work => not efficient !!								ent !!
(1 Variation induced by the changes occured between two configurations.									

Medium Size LNG Carrier

Optimum solution with a weight constraint

SEARCH FOR THE LEAST COST DESIGN (with constraint on the weight)									
			SPACING	s	Duct keel LEAST COST		WEIGHT		
CONFIGU- RATIONS	Optimum Type	Number of Web- frames	Second. Frame (A _C)	Stiffeners (A _L)	bulkhead. Plate Thickness (mm)	COST SAVI (see 1	ING (%) l)	(%)	
	Shown c	hange(s) b	etween 2 si ps	uccessive		Between 2 successive steps	Cumulated saving		
ALSTOM	MARS BV	Nw	Δ w/3	Δ _L (Alstom)	100%	0.00%	0.00%	100.00%	Initial Design (used as reference)
MET8 E-78	Least Cost	Nw	∆ w/3	Δ_L (Alstom)	105%	-1.39%	-1.39%	98.34%	
MET8 C-78	Least Cost	N _W -2	Δw/3	Δ_L (Alstom)	122%	-4.85% -6.24%		100.21%	Duct-keel plate thickness too large
MET 12 (*) Continuous	Least Cost	N _W -2	▼ <u>∆w/3</u> (*)	Δ_L (Alstom)	88% (*)	-0.68%	-6.92%	99.68%	OPTIMUM SOLUTION (with discrete design variables)
MET 12.b (*) Discrete	Least Cost	N _W -2	∆w/3 (*)	Δ_L (Alstom)	88% (*)	0.45%	-6.47%	100.88%	OPTIMUM SOLUTION (with continuous design variables)
(*) Layout is modified (1) Variation induced by the changes occured between two configurations.									
Improve	Improve IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia								

MODELER used to define 2,5D FEM model with different is (web-frame, bulkhead). loads, Classification society loads (e.g. IACS-CSR) are utomatically. Designer given loads from seakeeping are theory (cross section warping fields via FEM in ontal bending and warping torsion). Full 3D FEM models.
aads, Classification society loads (e.g. IACS-CSR) are utomatically. Designer given loads from seakeeping aam theory (cross section warping fields via FEM in contail bending and warping torsion). Full 3D FEM models.
earn theory (cross section warping fields via FEM in contal bending and warping torsion).Full 3D FEM models.
a should form and build and formation along at which should
ed shell 8-node macro-element).
of macroelement feasibility based on super-position of Ids and using the library of analytical safety criteria.
ultimate strength analysis of cross-section using J. lae, IACS and Hughes/Adamchak procedures. ensions definition from classification society rules.
pach to panel reliability. β-unzipping method used to stem probability of failure. alculation based on Nataf model.
weight = max. DWT increase; Min. Initial cost. using LUSA and SORM. c adculation using US-3. If is calculation for longitudinals. en bound of panel failure/racking failure probability. context messure / Taguch SN rato va FFE.
in e

BASIC MODELING BLOCKS

Macro-elements

(e.g. finite elements incorporating discrete stiffeners on the plate field);

Gross-elements

(Set of macro-elements unified with 'natural boundaries' e.g. deck at side);

Super-elements (Statically condensed parts of the structure);

Surrogates

(equivalent-elements or compounds) are sets of finite elements with equivalent characteristics (e.g. for modeling of large side openings, doors, windows, etc.).

SYNTHESIS MODULES (DeMak)

Problem definition	C# shell: SYNCHRO – decision support problem definition, selection of analysis and synthesis methods			
(Δ)	Auxiliary modules: CAPLAN – control of Pareto surface generation LINC – definition of feasible subspace based on subset of linear/linearized constraints			
Problem solution (Σ)	DeMak optimization solvers: MONTE – multilevel multi criteria evolution strategy FFE – Fractional Factorial Experiments CALMOP - SLP cross section optimizer MOGA - Multi objective GA DOMINO – Pareto frontier filter MINIS – subspace size controller HYBRID – combination solver-sequencer			
Problem graphics and interactivity (Γ)	MAESTRO Graphic Environment + De View C# Environment Design selection modules in metric space: GOAL- interactive goal input SAATY - inter-attribute preferences FUZZY - intra-attribute preferences COREL - statistical analysis of results			

MAESTRO Software

Method for Analysis Evaluation and STRuctural Optimization

Description:

The first and most widely spread integrated software for 'first principles' analysis of ship structures and preliminary design phase optimization.

User base:

Navies, Shipyards, Classification societies, Design offices, Universities, ...

Distribution and support:

DRS-C3 Advanced Technology Center, Stevensville, Maryland, USA. Web: http://www.orca3d.com/maestro/

OCTOPUS/CREST Analyzer

One-bay structural evaluation software developed by UZ-FMENA. Employs MAESTRO MODELER for preprocessing/postprocessing.

Software version with implemented IACS CSR for Double-hull Oil Tankers / Bulk Carriers.

Prof. Douglas Faulkner;Prof. Alaa Mansour;

nprove

ADEQUACY (α-1)

Library of structural adequacy criteria

ADEQUACY PARAMETER:

$$g = \frac{C - \gamma \cdot D}{C + \gamma \cdot D}$$

Where: C - Capability; D - Demand; γ - Safety Factor.

Definition range:

$-1 \le g \le 1$

Boundary cases:

g = 1	for	$\mathbf{D} = 0$
g = -1	for	C = 0

	PLATE BETWEEN STIFFENERS							1 ADEOLIACY $(\alpha-1)$				
OCTAN criteria	D	escriptio	N & REFEREN	ICE	MAESTRO name	Library of structural adequacy cri						
BV_PP_BACS	BUCKLING (B	IAXIAL COMPRI	SSION & EDGE SH Section 1. Subsection	EAR) OF PLATES	PCSF		,					
BV_PP_CB	BUCKL	ING (COMPRESS	ION & BENDING) (OF PLATES	PCCB			В	ureau veritas criteria			
BV_PP_S	Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>			РСМУ	СМУ							
	CORRUGATED BULKHAEDS,											
	OCTAN criteria	OCTAN DESCRIPTION & REFERENCE riteria BUCKLING (N.P.LANE COMPRESSION) OF CORRUG (BV Rules, Part B, Chapter 7, Section 1, Subsection 53 FRAM			CE MAESTRO name							
	BV_CB_CF				GATION WEBS 5.3.5, pp 78.)	PCSB						
					MES		_					
		OCTAN criteria DESCRIPTION		& REFERENC	ERAME G[F]YCF FRAME G[F]YCF FRAME G[F]YCF							
		BV_F_NS NORMAL STRESS CR (BV Rules Part B, Chapter 7, BV_F_SS BV_F_SS SHEAR STRESS CRI (BV Rules Part B, Chapter 7,					ITERIA FOR FRAM Section 3, Subsection					
							TERIA FOR FRAME Section 3, Subsection					
			s			STIFFENERS						
		OCTAN criteria DESCRIPTIO BV_0S_NS NORMAL STRESS CRITER (BV Rale-Part B, Chapt (BV Rale-Part B, Chapt (BV Rale-Part B, Chapt (BV Rale-Part B, Chapt BV_0S_D) BV_0S_S SHIA STRESS CRITER (BV Rale-Part B, Chapt (BV Rale-Part B, Chapter 7, BV_0S_US) BV_0S_US ULTIMATE STREAM THAN (BV Rale-Part B, Chapter 7, BV_0S_US) BV_0S_US BUCKLING (VARIOS MO (W Rale-Part B, Chapter 7, BV_0S_US)			SCRIPTION &	REFERENC	Е	MAESTRO name				
					RESS CRITERIA FO s Part B, Chapter 7, S	A FOR ORDIANARY STIFFENERS 7, Section 2, Subsection 3.6.1)		PYTF				
					SS CRITERIA FOR ORDIANARY STIFFENERS Part B, Chapter 7, Section 2, Subsection 3.6.1)		FFENERS 13.6.1)	PYTP				
					ENSIONS CRITERL B, Chapter 7, Section	NSIONS CRITERIA FOR STIFFENERS Chapter 7, Section 2, Subsections 1.4.1, 1.4.2, 1.4.3)		PYCF				
					NGTH IN BUCKLING OF ORDINARY STIFFENERS et B, Chapter 7, Section 2, Subsection 5.5.1, pp 91.)		f STIFFENERS 5.1, pp 91.)	PYCP				
					(ARIOUS MODES) Chapter 7, Section 2,	OF ORDINARY ST Subsections 4.4.1 a	TIFFENERS & 4.4.2, pp 90)	PSPBT				
mprov								EU FP6 J IMPROV 17-19 S	oroject IMPROVE Final Workshop E 2009, Dubrovnik, Croatia eptember 2009.			

Star	ADEQUACY (α-3) Longitudinal Ultimate Strength Analysis IACS CSR One-step method (Advanced buckling analysis)
	Loop on deck structural elements
	Calculated ultimate sagging capacity should not give stresses exceeding the yield stress of the bottom shell plating material.
STO	This method is not valid if the structural configuration is souch that the ultimate sagging capacity is not determined by the failure of the stiffened deck panels.
Improve	EU FP6 project IMPROVE Final Workshop IMPROVE 2009, Dubrovnik, Croatia 17-19 September 2009.

DeMak - Optimization Job Main Input Panel

The Six	😸 Job1											
Engineering	Subproblem.	almon			Model:	ISSC-3A Exam	ple 🗸]				
Systems	Physical (Φ) Env	vironment Response Elements	Adequacy	Reliability Qu-	ality Outputs		Selected	Value	Min	Мах	Step	Method 🔨
Subsystems,	Phy Subsys Bottom	GP1	e ^	Se Mme	^	● x ● p	Bottom.TPL Bottom.HSW	15 265.6	10 197	20 296	0.5 5	×
Elements, Descriptors	Reces	V E GP2		Bottom.	TPL	O g O a	Bottom TSW Bottom BSE	11	10 40	12	1	~
in The	Deck1	✓ GP4		Bottom.	HSW TSW	→ →	Petton TSF	34.4	22	44	2	~
Physical	Deck2 Deck3	 ✓ GP5 ✓ GP6 		Bottom	BOF TSF	Rem	Side_1.HSW	265.6	197	20	u.s 5	~
System Selected	Deck4 Deck5	 ✓ I arr ✓ GP30)	GP1.H	SW	Rem All	Side_1.TSW Side_1.BSF	11 50.83	10 40	12 55	1 2	× ×
Subproblem	Deck6	 ✓ GP31 ✓ GP3 ✓ GP8 	· ·	GP1.80	SF		Side_1.TSF Side_2.TPL	34.4 15	22 9	44 20	2 0.5	×
Variables	Analysis Methods	Selection				Synthesis Me	thods Selection		S	ubproblem S	equence	
Model and	Physic Er MM	LC1 PS	Adequacy PSY	Reliability Beta-Unz.	Quality Weight	Optimiser FFE	Coordinator Model	Visualize DeViev		Add Ren	nCyc	Group
Synthesys	mass	LC2 TS	PSB	B&Bou	Cost Safetu	MOGA CALMOP	Attribute			InitDes		
methods			PCB		LUSA	MOPSO				Decomp		
Control	Subproblem List	Variables	Pa	arameters	Attributes	Cor	straints	Optimise	r	NDOM		Create
Optimization	2 Calmop	71			\rightarrow	801		CALMOR	,			Modify
Subproblems	2 GALELA	LMUP 71			7	801		ZVGASc	lver			Remove
List and	4 GA_L 6 GA_T	44			7	359		ZVGASC	iver Iver			
Gontrole	17-19 September 2009.											

- Enables Optimization of Complex Systems
- Gives better understanding of overall process
- Enables various combinations of optimization algorithms (HYBRID Optimizers)
- Enables optimization of decomposed structure (longitudinal – transversal)

Improve

IMPROVE 2009, Dubrovnik, Croatia 17-19 September 2009.

DeMak – Definition of Inter / Intra Attribute Preferences

OCTOPUS Team members that participated in OCTOPUS developments (* denotes DeMak developers):

www.fsb.hr/octopus

Vedran Žanić*, Tomislav Jančijev*, Jerolim Andrić*, Marko Stipčević*, Pero Prebeg*, Stanislav Kitarović, Karlo Pirić*, Bozo Vazic*,

Svemir Bralić, Darko Frank*, Josip Hozmec.

Improve

EU FP6 project IMPROVE Final Workshop IMPROVE 2009, Dubrovnik, Croatia 17-19 September 2009.

EU FP6 project IMPROVE-Final Conference IMPROVE 2009, Dubrovnik, CROATIA, 17-19 Sept. 2009 222

- Structural modelling
 - Utilisation of digital information such as GA and hull shape
 - Efficient modelling functions for iterative conceptual design
- Structural analysis
 - Advanced methods for fast response analysis, and for efficient post-processing
- Software architecture
 - User-friendly interface

Improv

 Flexible architecture for new research results

- Modelling
 - NAPA Steel
 - ConStruct model
- Problem definition
 - Load definitions
 - Design variables
 - Objectives
- Optimisation with genetic algorithm
 - Initial population
 - Structural evaluation
 - Pareto frontier

Improv

- GA from the previous design step
- Definitions of steel GA with help of NAPA steel

Tanker optimisation in ConStruct

- Modelling
 - NAPA Steel
 - ConStruct model
- Problem definition
 - Load definitions
 - Design variables
 - Objectives
- Optimisation with genetic algorithm
 - Initial population
 - Structural evaluation
 - Pareto frontier

mprov

- Modelling
 - NAPA Steel
 - ConStruct model
- Problem definition
 - Load definitions
 - Design variables
 - Objectives
- Optimisation with genetic algorithm
 - Initial population
 - Structural evaluation
 - Pareto frontier

Improv

Thank you for your kind attention!

APPLICATION CASES

Product Presentation: LNG Carrier (WP6)

LNG vessel maintenance

• Hull Structure & Ballast tanks

- Many and large ballast tanks in an LNG vessel
- Maintenance is not strongly influenced by hull structural optimisation
- Coating is very important, if not done properly corrosion can be real problem
- On the long term, fatigue problems can pop up in way of the hot spots if structural details are not carefully designed
- Indents due to hard contact with tugboats or jetties

Electric / Automation system

- Cargo operations fully automated on the recent vessels
- Cable trays on open deck are critical
- Cargo and Auxiliary machinery
 - Planned maintenance needs to be done

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

Speed & Performance

- Cargo is transported at -163°C and atmospheric pressure under "boiling" condition
- · Daily boil-off gas is generally used for the propulsion
- Vessels design speed is generally 19.5 kn
- Increasing efficiency or reducing consumption is positive, taking into account that the propulsion plant should use the full boil-off gas
- · Fuel is usually paid by the charterer

Presentation's Plan

- I. Problem analysis
- II. Solution's presentation
- III. Solution's comparison

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

Stability - Results

All the criterions are verified for all the intact and damage situations, for every loading conditions

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

Presentation's Plan

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

Improve

Indicative time

Indicative time	Conventional LNG	Syolgas		
Manufacture part	65629	63228		
Forming	2766	2665		
Preprefabrication	44509	42881		
Prefabrication	222618	214472		
Assembly	105162	101314		
Total	440685	424560		
-3.7% IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia				

EU FP6 project IMPROVE-Final Conference IMPROVE 2009, Dubrovnik, CROATIA, 17-19 Sept. 2009 247

Optimization procedure Optimization carried out on two principal steps: • without New IMPROVE modules:

• with New IMPROVE modules, i.e. the <u>sloshing</u>, the <u>fatigue</u> and the <u>multi-structure</u> modules.

Improve

CONSTRAINTS

A. Structural constraints:

➤Von Mises stress in plates, longitudinal stiffeners and web-frames ≤ 175 MPa

>ultimate strength of the beam column

>minimum plate thickness to avoid yielding / buckling .

B. Geometrical constraints:

 $> \delta \le 2 \text{ x Tw} \quad ; \quad 0,625 \text{ x } D_F \le D_W; \quad$

 $> D_W \le 2.5 \text{ x } D_F; D_W \le 36 \text{ x } T_W;$

 $> T_W \le 2 \ x \ \delta$.

<u>C. Equality constraints:</u>

≻All web-frame spacing is equal;

Stiffeners on deck and bottom have equal spacing and dimensions;

Thickness on deck and bottom (inner and outer hull) plates is constant;

OPTIMIZATION OF STANDARD DESIGN

> 5 LOAD CASES

N°	Description	Draught (m)	Still Water Bending Moment (kN.m)	Ship upright		Inclined ship			
				A1	A2	в	с	D	
LC1	Homogeneous loading conditions	13.2	1700000 (sagging)		x	x		x	
LC2	Ballast conditions	11.62	3500000 (hogging)	x			x		
Improv	nprove IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia								

OPTIMIZATION OF STANDARD DESIGN

LBR-5 – LNG optimization taking into account multi-structure

constraint – <u>academic approach</u>

Gain in cost of <u>18.9 % for the cofferdam</u>. <u>Not</u> <u>realistic</u> results and reveals that the cofferdam is <u>not</u> <u>strongly constrained</u>.

Results remains "academic" due to simplifications (shape of the cofferdam and no stresses transfer) For the main tank, the gain in <u>cost remains the</u> same $(9.7 \% \cong 9.67\%)$.

Scantling	Mass [tons]	Gain in mass	Cost [M€]	Gain in cost
Initial	1 840.44		3.168	
Optimized	1 682.81	10.34 %	2.861	9.71 %
Optimized with cofferdan	n 1 648.47	10.43 %	2.862	9.67 %
	ROVE Final Workshop,	September 2009, Dubro	ovnik, Croatia	

OPTIMIZATION OF STANDARD DESIGN

LBR-5 - LNG optimization results

Scantling	Mass [tons]	Gain in mass	Cost [M€]	Gain in cost
Initial	1840.44		3.16	
Optimized	1682.81	8.56%	2.86	9.62%
Optimized with sloshing	1 694.98	7.90%	3	5.25%
Optimized with sloshing & Corrected fatigue	1714.13	6.86%	3.02	4.58%

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

OPTIMIZATION OF STANDARD DESIGN

>Plate thickness \diamond (in general)

>Stiffener web height \diamond (except upper outer deck)

Stiffener web thickness 🖄 (except inner hull and outer bottom)

Stiffener spacing 🧷 (less stiffeners on the optimized scantling)

>Web-frame thickness generally \diamond

>Web-frame spacing \diamond (more web-frames on the optimized scantling).

OPTIMIZATION OF FREE BALLAST DESIGN

07 LOAD CASES

N°	Description	Draught (m)	Still Water Bending Moment (kN.m)	Ship upright		Inclined ship		
				A1	A2	в	с	D
LC1	Homogeneous loading conditions	14.1	3700000 (sagging)		x	x		x
LC2	Ballast conditions	9.52	4500000 (hogging)	x			x	
LC3	Unloaded conditions	5.03	4500000 (hogging)	x			x	

OPTIMIZATION OF FREE BALLAST DESIGN

LBR-5 – LNG optimization taking into account multi-structure constraint – *academic approach*

>For the main tank, gain in cost remains the same $(5.81\% \cong 5.75\%)$.

≻Results remains "academic" due to simplifications (shape of the cofferdam and no stresses transfer)

Multi-structure module cannot be used to define the final scantling.

Scantlin	ıg	Mass [tons]	Gain in mass	Cost [M€]	Gain in cost
Initial		1 845.70		3.13	
Optimized		1 642.29	11.02 %	2.95	5.81 %
Optimized with multi-structure		1 641.64	11.05 %	2.96	5.751 %
Improve	IMPROVE Fina	al Workshop, Septer	mber 2009, Dubrovn	nik, Croatia	

OPTIMIZATION OF FREE BALLAST DESIGN LBR-5 – LNG optimization taking into account fatigue corrections

		Gain in	Cost [M€	Gain in
Scantling	Mass [tons]	mass	(M\$)]	cost
Initial	1 845.70		3.13	
Optimized	1 674.83	9.25%	2.95	5.81%
Optimized with sloshing	1 714.55	7.10%	3.04	3.06%
Optimized with sloshing & Corrected fatigue	1744.37	5.49%	3.05	2.71%

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

OPTIMIZATION OF FREE BALLAST DESIGN Non-optimized vs. Optimized

➢Plate thickness ↗ (except outer hull)

Stiffener web height 🖄

≻Stiffener spacing ≃

➤Web frame thickness \u03e4

>Web frame spacing \Im (not significantly : 2662 mm instead 2700 mm).

STANDARD Design versus FREE BALLAST Design

WITHOUT ANY NEW MODULE

	Initial Cost [M€]	Final Cost [M€]	Difference %
Standard Design	3.16	2.86	9.70 %
Free ballast Design	3.13	2.95	5.81 %

> SLOSHING MODULE

	Initial Cost [M€]	Final Cost [M€]	Difference %
Standard Design	3.16	3.00	5.25 %
Free ballast Design	3.13	3.04	3.06 %

>SLOSHING & FATIGUE MODULES

>Normalized scantling (sloshing and fatigue)

	Initial Cost [M€]	Final Cost [M€]	Difference %		Initial Cost [M€]	Final Cos [M€]	at I)ifference %
Initial Design	3.16	3.02	4.58	Initial Design	3.16	3.06		3.14%
New Design	3 .13	3.05	2.71	New Design	3.13	3.07		2.09%
LNG stand	ard Design	I						
> more severe loading conditions for New Design						stan	dard	free ballast

Sloshing & fatigue Modules → important impact >Initial scantling (50% panels don't respect sloshing)

Improve

>Increase of certain panel's scantling to avoid fatigue cracks

 standard
 free ballast

 Design still water
 1700000 (sagging)
 3700000 (sagging)

 moment (kN.m)
 3500000 (hogging)
 4500000 (hogging)

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

STANDARD Design versus FREE BALLAST Design

Design	Standard		Free ballast			
		Initial s	cantling			
Mass [tons]	1840).44	1845.70			
	Optimized scantling (only sloshing constraints)					
Mass [tons] / Gain	1694.98	7.90%	1714.55	7.10%		
	Optimized s	cantling (slosł	ning & fatigue	constraints)		
Mass [tons] / Gain	1714.13	6.86%	1744.37	5.49%		
	Normalized scantling (sloshing and fatigue constraints)					
Mass [tons] / Gain	1709.76	1709.76 7.10% 1724.73 6.55%				

standard Design weight < free ballast Design weight before and after optimization

STANDARD Design versus FREE BALLAST Design

LNG Initial Design VS. LNG New Design – on optimized structure

LBR-5 least weight optimization
least weight objective function

Design	Sta	ndard	Free ballast				
		Initial	scantling				
Mass [tons]	18	40.44	18	45.70			
Cost [M€]	3	3.16	3	3.13			
	least cost optimization						
Mass [tons] / Gain	1694.98	7.90%	1714.55	7.10%			
Cost [M€] / Gain	3.00	5.25%	3.04	3.06%			
		least weight	t optimization	L			
Mass [tons] / Gain		15.84%		14.41 %			
Cost [M€] / Gain	3.94	-24.68% (increase)	3.13	-18.21% (increase)			

LBR-5 least weight optimization results

>Differences can be explained by the strong variation of the scantling.

➤ "Least cost" and "least weight" optimizations of the "Standard" design drive to different scantlings

	Least cost	Least weight
Plate thickness	10 ÷ 25 mm	10 ÷ 24 mm
Stiffeners spacing	870 mm	400 ÷ 600 mm
Web-frame spacing	2600 mm	1950 mm

WP6 LNG CARRIER

STRUCTURAL OPTIMIZATION

V. Zanic, J. Andric, N. Hadzic (UZ), University of Zagreb, Zagreb, Croatia

WP 6 - UZ LNG structural optimization

OBJECTIVE • STRUCTURAL MULTICRITERIAL OPTIMIZATION • DESIGN PROCEDURE: • FORMULATION OF DESIGN SUPPORT PROBLEM • ANALYSIS OF PROTOTYPE STRUCTURE • STRUCTURAL OPTIMIZATION • COMPARISON OF RESULTS • DESIGN VARIABLES: structural scantlings, BBS and web frame spacing • Tank 3 was chosen to be optimized

LOADING CONDITIONS: 5 loading conditions, 17 load cases

Loading condition	LC	Description	Draft, m	M _{VTOTAL} , kNm	M _{HTOTAL} , kNm	Q _{HTOTAL} , Kn
	1	SAGG, a2	14.1	-8720500	0	0
FULL LOAD	2	SAGG, b	14.1	-8720500	0	0
	3	SAGG, d	14.1	-5708200	2080283	0
DALLACT	4	HOGG, a1	9.525	8929816	0	0
BALLAST	5	HOGG, c	9.525	6271926	-2080283	0
	6	HOGG, a1	5.03	8929816	0	0
UNLOAD	7	HOGG, c	5.03	6271926	-2080283	0
	8	HOGG, a1	12.69	8479816	0	0
	9	HOGG, a1	12.69	6885082	0	39951
	10	SAGG, b	12.69	-970500	0	0
	11	HOGG, b	12.69	836880	0	-23797
TAINK	12	HOGG, c	12.69	5821926	-2080283	0
	13	SAGG, a2	10.575	-8350500	0	0
ALTERNATE	14	SAGG, a2	10.575	-6543120	0	-38626
CONDITION - FULL	15	SAGG, b	10.575	-8350500	0	0
MIDDLE TANK	16	SAGG, b	10.575	-6543120	0	-38626
	17	SAGG, d	10.575	-5338200	2080283	0

SLOSHING LOADS : According to BV Rules

Used for calculation of allowable minimum plate and stiffener characteristics

WP 6 - UZ LNG structural optimization

Final results and comparison

	Design solution	Structural mass (middle tank	Mass savings, %	Safety (TNUC)	VCG, mm	Normalized cost
Concept	Initial, P ⁰	3931	/	110	16155	1.00
desing	Optimal, O ^{3Concept}	3457	12.0	42	15957	0.87
Preliminary	Optimal, O ^{3Preliminary}	3251	17.3	3	15931	0.85
design	Standardized, D ⁴	3507	10.8	0	15951	0.95

WP 6 - UZ LNG structural optimization

Comparison of results:

COMPARISON OF RESULTS - VCG, mm

COMPARISON OF RESULTS - NORMALIZED COST

THANK YOU!

WP 8-UZ TBHD optimization

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

Collision scenario					
Collision velocit	/	v= 13 kn or 5 kn b=60 deg			
Mass of the strik Structural ma Hydrodynam	king ship ass ic added mass in surge	m ^a =930 [ton] m ₁ ^a =46.5 [ton] (5% of m ^a)			
Mass of the stru Structural ma Hydrodynam Hydrodynam	ck ship ass ic added mass in surge ic added mass in sway	m ^B =179 211 [ton] m ₁ ^B =8960 [ton] (5% of m ^B) m ₂ ^B =35842 [ton] (20% of m ^B)			
Improve	IMPROVE Final Workshop, Septen	nber 2009, Dubrovnik, Croatia			

Results

- Scenario 1. Assumed to be the most critical scenario from a structural point of view for the given vessels.
- V=13 kn, t=17 mm

Improv

- outer hull is heavily penetrated
- tearing initiates at about t=0.1 s
- the inner hull remains intact

Conclusions

- At maximum speed, the outer hull will be penetrated (t=35mm)
- The size of the damage opening increases significantly as the thickness becomes lower
- Altering the structural configuration could improve the crashworthiness of the side structure
- In the current design, the longitudinal stringer just above the collision point presents a hard point in the structure and prevents deformation to spread more evenly
- Reduction of the speed of the striking ship reduces the amount of energy available for structural deformations and the outer plating of the struck ship remains intact even in the case of 15 mm plating.
- The inner plating remains intact for all scenarios.

IMPROVE Project Objectives – improve generic ship design

New generation of design

- 220 000 m³ capacity LNG
- pronounced V-shape section

Structural design optimization at the early stage design

- multi-stakeholders requirements
- using existing design platforms and tools
- create and/or improve rational models
- design characteristics optimization

Principal objectives

- reduction of the manufacturing costs and production lead-time
- reduction of the maintenance costs for ship-owners

IMPROVE - LNG carrier methodology

2. Second phase – development and integration of new IMPROVE modules

Sloshing module (BV)

- quasi-static pressure on the inner hull
- CFD, sloshing test campaign (ECN, GTT)

Fatigue module (TKK)

- fatigue damage on critical connections
- based on "nominal stress" and Miner's rule
- ANAST validation by FEA

Cost module (ANAST)

- Production cost provide reliable assessment of production cost
- Life cycle cost (NAME), dll (ANAST)
- Multi-materials cost (Chemical tanker)

2. Second phase - development and integration of new IMPROVE modules

Multi-structure module (ANAST)

- simultaneous optimization of structures
- main application cofferdam and tank
- specific for LBR-5

Vibration modules (ANAST, SDG)

- local vibrations stiffened panels
- global vibrations hull beam
- beam modeling
- ROPAX product

Improv

LNG	designs	- optim	ization
		- P	

LBR-5 least cost optimization results

Design	Standard		Free ballast		
	Initial scantling				
Mass [tons]	1840.44 1845.70				
Cost [M€]	3.1	6	3.	.13	
	Optimized scantling (only sloshing constraints)				
Mass [tons] / Gain	1694.98	7.90%	1714.55	7.10%	
Cost [M€] / Gain	3.00	5.25%	3.04	3.06%	
	Normalized scantling (sloshing and fatigue constraints)				
Mass [tons] / Gain	1709.76	7.10%	1724.73	6.55%	
Cost [M€] / Gain	3.06	3.14%	3.07	2.09%	

- indirect weight gain
- the values correspond to a half of tank
- more severe loading conditions imposed to "Free ballast" design

Improve

LNG carrier – least cost optimization

LBR-5 least weight optimization results

Standard Design - 15.84% gain in weight, but the cost increase 24.68%
 - from 3.16 M€ to 3.94 M€

	Least cost	Least weight
Plate thickness	10 ÷ 25 mm	10 ÷ 24 mm
Stiffeners spacing	870 mm	400 ÷ 600 mm
Web-frame spacing	2600 mm	1950 mm

LBR-5 cost gain source – standardized scantling

- Standard Design : cost/weight → from 1.72 €/kg to 1.79 €/kg
- Free ballast design : cost/weight → from 1.70 €/kg to 1.78 €/kg
- the cost gain influenced by the decrease of the global weight

LNG carrier - optimization

OCTOPUS/Maestro results

	Design solutions	Structural mass (middle tank +	Mass saving	Safety (TNUC)	Normalized cost
		cofferdam)	-		
Concept	Initial	3931 tons	-	110	1.00
design	Optimal, concept	3457 tons	12.0 %	42	0.87
Preliminary	Optimal, preliminary	3251 tons	17.3 %	3	0.85
design	Standardized	3507 tons	10.8 %	0	0.95 / 5 %

• 4 ÷ 7 % saving in weight for preliminary design with respect to the good concept design

- 12 % saving for concept design with respect to the initial design
- objective function minimization of total mass and cost

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

LNG carrier - optimization

Gravity center variation

	Design	Initial	Standardized	Difference
LBR-5	"Standard"	15269 mm	15135 mm	1 3 cm
	"Free ballast"	15380 mm	15895 mm	7 50 cm
OCTOPUS/MAESTRO	"Free ballast"	16155 mm	15951 mm	▶ 20 cm

Free ballast design net weight (tank + cofferdam)– LBR-5 versus OCTOPUS

	Initial	Standardized	Gain
LBR-5*	4312 tons	3909 tons	<mark>9.39 %</mark>
OCTOPUS/MAESTRO**	3931 tons	3507 tons	10.8 %

* LBR-5 cofferdam rectangular

** OCTOPUS – some missing structural elements

Reduced fuel consumption

- Vessel is more attractive for charterer
- Reduced emissions: vessel is environmental friendly

Ballast free design – no ballast water treatment

- Newbuild vessels have to comply with the IMO regulations regarding ballast water treatment
- LNG vessels have a large amount of ballast water, typical ballasting/deballasting flows: 3,000 m³/h
- Existing ballast treatment systems only feasible up to 1,000 m³/h
- Ballasting/deballasting times will have to be increased
- Operational cost for treatment systems can be saved:
 - Power consumption
 - Use of chemicals

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

Conclusions

- > Ineluctable advatages of the "Free ballast" design
- > Slightly lower propeller eficiency
- > 13 m design draught bigger for some terminals
- LNG reduction cost strongly influenced by the descrease of the weight (LBR-5 simulations)
- > The weight gains very close LBR-5 and OCTOPUS/MAESTRO
- Less cost gain with LBR-5 comared to OCTOPUS/MAESTRO
- A least cost structural design with an optimization tool corresponds at the end to a multi-objective optimization, as the production cost and the weight are merged in the objective function

IMPROVE project delivered an integration support system for a methodological assessment of LNG ship design

Product Presentation: ROPAX Ship (WP7)

IMPROVE ROPAX

Ship Owner requirements, markets and future trends

Dario Bocchetti Stefano Melisi Luca Ferrari

Grimaldi Group

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

RoPax Vessels are built to combine basically, and of course to take profit on it, 2 genre of transport: the roll on roll of services (as trailer, semi trailers, cars and special cargo) and the passenger transfer.

The first aspect is the creation of a solid network to guarantee to each client the most flexible and wide range of possibilities. With this vision since the beginning of Improve Project three years ago, Grimaldi Group has extended the initial RoPax fleet of only 5 Vessels into an exponential growth with a huge new building program. Furthermore two major RoPax operators have joined the GROUP: Minoan for Greek links and Finnlines for Scandinavian routes.

The second utmost is to have a young, competitive, environmentally friendly and most efficient fleet. Considering the daily operative cost a RoPax (and nowadays still more with economic crisis) only an extremely high efficiency can allow to remain on the market.

For above reasons. the global goal of the Improve project for a RoPax project have been:

- •Reduced production cost;
- •Reduced fuel oil consumptions;
- •Reduced maintenance cost;
- •Increased lane metres as possible;

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

Key Performance Indicators

- Capacities (3000LM300cars and flexibility)
- Structures
- Stability
- •Sea keeping
- Manouvrability
- •Resistance and Powering
- Confort
- •Machinery and Systems
- •Economic Function (LCC)
- Safety

Improv

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

Operative aspects and load cases

Thank You !

IMPROVE design methodology – 3 main phases:

- 1. Identification of stakeholder's requirements and the definition of key performance indicators (KPI) Selection of STANDARD SHIP which was used as prototype.
- 2. Development of new modules (fatigue assessment, vibration level investigation, ultimate strength, load assessment, production and maintenance cost) which were integrated in the optimization tool (LBR5, OCTOPUS) – NEW SHIP was designed (improvement in terms of main particulars, general arrangement, hydrodynamic and propulsion performance) using existing tools.
- 3. Application of the new (improved) optimization tool for the final ship design (IMPROVE SHIP). It is integrated decision support system for a methodological assessment of alternative ship designs. This system provided a rational basis for decision making regarding the design, production and operation of a innovative ROPAX ship.Based on this system all the aspects related to general arrangement, propulsion, hull shape and design of the structure were investigated.

ULJANIK Shipvard

IMPROVE

Shipowner requirements

Т		7.5 m				
Trial s	speed	24.5 knots				
Deadw	reight	8200 t				
Passer	ngers	1400 passengers i	in 350 cabins + 200 pas	ssengers in aircraft seats		
Cre	w	200 persons				
Cargo ca	pacities	Trailers - 3000 lan Cars - 300 pcs Cle	ne meters Clear height = ear height = 2 m	= 4.7 m		
Capac	tiities	HFO=860 m3, DC	D=440 t, FW=1000 m3,	, SW=600 m3		
Increase	carrying ca	apacity (lane meters	s) on tank top			
Achieve	load carryi	ng flexibility (no pi	illars in cargo space)			
Improve	the vessel'	s operational perfor	rmance and efficiency			
Maximiz	the robus	tness of the require	ed freight rate (large va	riations in season trade - s	ummer 3000 pax, winter 100 pax)	
Design fo	or redunda	ncy and simplicity of	of systems			
Maximiz	e comfort -	- minimize vibratio	ons			
Increase	ship's man	oeuvrability				
Optimize	e the seaked	eping performance	for the Mediterranean S	Sea		
						B
	IM	PROVE			ULIANIK Shipvard	<u>}</u>

EU FP6 project IMPROVE-Final Conference IMPROVE 2009, Dubrovnik, CROATIA, 17-19 Sept. 2009 293

Conclusions on optimum Design Selection

- A total number of six RoPax ship model variants were investigated in order to determine the best variant with respect to multiple objectives (lowering of ship height, minimization of total mass, cost and position of vertical centre of gravity, safety criteria).
- Comparison between all six models (initial and proposed) with the following conclusions:

- It can be seen that total mass of every model is successfully decreased for approximately 200 to 300 t (depending on a model).

- Also, cost and VCG are successfully decreased.

- Regarding safety, it is increased due to smaller number of unsatisfied constraints and greater relative adequacy index.

- Height of chosen model is increased for 300 mm due to damage stability criteria (freeboard height mainly depends on cargo space breadth).

Improve ULJANIK Shipyard

		YARD	PROTOTYPE CONCEPT	IMPROVE PI	ROJECT SHIP-OW EXPECTATION	NER AND YARD S		
Ke	y Performance Indicators (KPI)	PROTOTYPE SHIP LEVEL 1	+ OWNER'S REQUIREMENT S LEVEL 2a	INITIAL DESIGN GAINS LEVEL 2bi	INITIAL DESIGN GAINS LEVEL 2011	TOTAL EXPECTED GAINS LEVEL 3	GAIN (%) LEVEL 3 vs. LEVEL 2bii	
1.0		:	SHIP FUNCTIONS					
1.1								
	Lightship mass [t]	12200	12700	12700	12700	12200	4%	
	Total lane metres	3000	3000	3000	3000	3000	0%	
	Trailer lane meters on tank top [m]	180	200 (GAIN 11 %)	400 (GAIN 122 %)	400 (GAIN 122 %)	420 (GAIN 133 %)	5%	
	Load flexibility	15 t/axle, 168 cab, 4500 mm	15 t/axle, 350 cab, 4700 mm	15 t/axle, 350 cab, 4700 mm	15 t/axle, 350 cab, 4700 mm	15 t/axle, 350 cab, 4700 mm		
	Volume of ballast tanks (m ³)	3700	3700	2800	2800	2800		
	Number of ballast tanks [#]	12	12	10	10	10		
1.2								
	Steel mass [t]	8100	8500	8500	8500	8100	-5%	
	Fatigue life [years]							
	Use of MS (% of total mass)	70%	minimum 70 %	75%	75%	minimum 75%		
	Painted surface [m ²]	110000		130000	130000	128000	GAIN 2 %	
10	Longitudinal spacing [mm]	640	CTADIUT	640/600	640/600		_	
1.5	Speed loss in waves [kn]		STABILIT					
	Number of deck wetness [#							
	Number of propeller racings [#]	2 POD	2 POD	1 FPP + 1 POD	1 CPP + 2 RT	1 CPP + 2 RT		
	Turning ability index	As per IMO Req	As per IMO Req	As per IMO Req	As per IMO Req	As per IMO Req		
	Number of propeller racings [#]	2 POD As per IMO Req	2 POD As per IMO Req	Asper IMO Req	As per IMO Req	1 CPP + 2 RT As per IMO Req		
-	IMPROVE	_				ULJANIK Shi	pyard	

ROPAX KPI overview

		YARD	PROTOTYPE	IMPROVE P	ROJECT SHIP-OW EXPECTATION	NER AND YARD S	-
Key	y Performance Indicators (KPI)	PROTOTYPE SHIP LEVEL 1	+ OWNER'S REQUIREMENT S LEVEL 2a	INITIAL DESIGN Gains Level 261	INITIAL DESIGN GAINS LEVEL 2011	TOTAL EXPECTED GAINS LEVEL 3	GAIN (% LEVEL 3 \ LEVEL 2t
1.4							
	Power requirements [MW]	26900	24000 (GAIN 11 %)	19000 GAIN 29 %	20500 GAIN 24 %	19560 (GAIN 27 %)	GAIN -5%
	Trial speed [kn]	24.50 kn	24.50 kn	24.50 kn	24.50 kn	24.50 kn	
1.5					.	+	
	Machinery mass	1300 t		860 t (GAIN -34 %)	860 t (GAIN -34 %)	830 t (GAIN -36 %)	GAIN -4
	Diesel engines cost	7,8 ME		6,7 ME (GAIN - 14 %)	6,7 ME (GAIN - 14 %)	6,5 ME (GAIN -17 %)	GAIN - 3
	Machinery reliability	64 cyl	48 cyl	(9+24) cyl	(12+24) cyl	(12+24) cyl	
1.6		-					
	Passenger's comfort level	Accom. Area 5700 m2	Accom. area 10200 m2	Accom. area 10200 m2	Accom.area 10200 m2	Accomodations area 10200 m2	
	Motion sickness incidences (MSI) [%]	MG=2,7 m	MG=2,1 m	MG=1,1 m		MG=1,1 m	
	Vibration levels	IMO req	Minimize	IMO req		Price difference for 10 % reduction	
	Noise levels	IMO req	Minimize	IMO req		Price difference for 10 % reduction	

Improve

IMPROVE

ULJANIK Shipyard

		YARD	PROTOTYPE CONCEPT	IMPROVE P	ROJECT SHIP-OW EXPECTATION	NER AND YARD S	CAIN (%)
Ke	y Performance Indicators (KPI)	PROTOTYPE SHIP LEVEL 1	OWNER'S REQUIREMEN' S LEVEL 2a	INITIAL DESIGN GAINS LEVEL 2bi	INITIAL DESIGN GAINS LEVEL 2bil	TOTAL EXPECTED GAINS LEVEL 3	LEVEL 3 vs. LEVEL 2bil
2.0							
2.1							
	Lifecycle costs						
2.2							
	Acquisition costs						
2.3							
	FO consumption [FO cost per cargo unit] and [specific fuel consumption]	118+ 12 =130 t/24h	105+12=117 t/24h (GAIN 10 %)	82+12=94 t/24h (GAIN 27 %)	90+12=102 t/24h (GAIN 22 %)	85+12=97 t/24h (GAIN 25 %)	GAIN -5 %
	Crew costs [€]						
	Turnaround time in port [hours						
	Port charges						
	Cost of maintenance [€]					5 - 10 %	
	Time out of service [hours]						
	Operation efficiency [6]					10% - 15%	
2.4							
	RFR [€/cargo unit]						
3.0							
	Subdivision index	0.72	Maximize	0.75	0.75	Price difference for A=0,76	
	Redundancy index	100%		100%	100%	100%	
	Structural safety index (system and component)			As per BV Rules	As per BV Rules	As per BV Rules	
	Evacuation ability index						
4.0							
	RFR robustness						
	Structural robustness						
٦re							B 1856
pic	IMPROVE				ULJAN	IK Shipvard	

variant (D7.2)

(3) final scantling preliminary design phase optimization and evaluation based on full ship 3D FEM model.

	Generic problem synthesis block	
variables (x)	Φ: x ^G x ^T d ^s d ^M [3D generic / 2.5D strip]	←
objectives (y)	Ω: min Ω1, Ω2, max Ω3- Ω9	
constraints (g)	Layout/General arrangement (GA); α: [EPAN, LUSA/ EVAL]	+ 2
AnMod	ε: [LS, racking]; ρ: [OCTOPUS/ MAESTRO]	
SyMod	Σ: [SLP, ES (MCS, FFE (OA, ANOVA, ort. poly.), MOGA, MOPSO, ENUM)]	
Result	Г: [Pareto designs, preferred designs (fuzzy fn., L _p)]	•

	Itom	Subauatam		D	ESIGN V	ARIABI	LES PROPE	RTIES				
le ul e le le e	nem	Subsystem	Туре	Name	Min	Max	Step	Comment				
ariables	1	CS	G	Width_D1 to D3				One more car lane				
x ^T . x ^G)	2	CS	G	Height_D3				Damage stability calc.				
,,	4	Deck 4	G	Height of Deck 4 transverse beam				Influences height of deck 4				
	5	CS	Т	Superstructure decks	e.g. 2	e.g. 3		Same operating area				
q(x) > 0	1	BV_CB_CF		Corrugated pla	ating	Buch	Buckling due to in-plane compression.					
Constr.	Item	Limit state		Application	Application							
g(x) > 0)	2	BV PP CB		Confugated pla	anng	Buck	Buckling due to compression and bending					
using	3	BV PP S		Plane plating		Buck	Buckling due to edge shear.					
denacy	4	BV PP BACS				Buck	cling: bi-ax	ial compression and shear.				
aoquoj	5	BV_CP_C				Buck	cling due to	compression.				
Set (a)	6	BV_CP_S		Curved plating	3	Buck	cling due to	edge shear.				
	7	BV_CP_CBS				Buck	cling: comp	ression, bending and shear.				
	8	BV_OS_VBM		Ordinary stiff	eners	Vari	ous bucklin	g modes due to axial loading				
	9	BV_OS_US		Ordinary surfic		Ultir	nate strengt	h				
	10	BV_PSM_VB	M	Primary supp.	members	Vari	ous bucklin	g modes due to axial loading				

Item	NAME	ACRONYM	ANALYSIS TOOL	APPLICABLE TO	Туре
1	Production cost – simple calculation	CST-O	OCTOPUS	Ship zone	Min.
2	Structure weight	WGT-O	OCTOPUS	Ship zone	Min.
3	Local deterministic panel safety measure	LDPSM	OCTOPUS	One bay	Max.
4	Max. ult. bending moment in hogging	MUH-O	OCTOPUS		Max
5	Vertical position of center of gravity	VCG-O	OCTOPUS		Min
6	Production cost – simple calculation	CST-M	MAESTRO	Ship zone	Min.
7	Structure weight	WGT-M	MAESTRO	Ship zone	Min.
8	Vertical position of center of gravity	VCG-M	MAESTRO		Min
9	Fatigue life of structural details	FATLIFE	IMPROVE	Cross Section	Max
10	Preventive maintenance cost	PMC	IMPROVE	Cross Section	Max
11	Corrective maintenance cost	CMC	IMPROVE		Min
12	Production cost - advanced	ACST	IMPROVE		Min
13	Production cost - simulation	SIMCST	Plant Sim.		Min
14	Robustness of structural maintenance cost	RMC	IMPROVE		Min
15	Robustness of production cost of structure	RPC	IMPROVE		Min
16	Required Freight Rate	RFR	Head Designer		Max
17	User defined utility functions of items 1-16	U_1U_n	Head Designer		

Objectives $y_i(x)$ using quality attributes set (Ω)

Design variables for longitudinal structural elements for S1M1

	1		Pl	ate thickne	ISS	1	BBS (NS)		St	iffeners HF	,	Longitudinal girder										
Structure	Str	akes											HOW			TGW			BGF			TGF
			P0	Min	Max	P0	Min	Max	P0	Min	Max	P0	Min	Max	P0	Min	Max	P0	Min	Max	P0	Min
"Keel"	8	119	15.5	14.0	18.0	640	600	900	HP300x11	240x10	300x14											
"Bottominner"	9-11	120-122	13.0	10.5	15.0	040	600	900	HP300x11	240x10	300x14											
"BottomOuter + Bilge"	13,14,37	124,125,135	13.0	11.0	15.0	650	600	900	HP280x11	220x10	280x13											
"Inner BottomGrder Down"	22	128	14.0	10.0	18.0	500	600	900	FB150X10	100 X 6	200 X 15											
"Inner BottomGrder Upp"	21	127	14.0	85	18.0	496	400	700	HP280x11	220x10	280x13											
"Inner BottomLBHD"	16	126	11.0	10.0	15.0	670	600	900	HP140x7	220x10	300x14											
"HFOtank top"	25, 26	129,130	13.0	11.0	18.0	640	600	900	HP320x12	240x10	320x14											
"Deck 1 Inner"	31, 32	131,132	11.0	9.5	18.0	640	600	900	HP260x10	240x11	260x13											
"Deck 1 Outer"	33, 34	133,134	13.0	11.0	18.0	040	600	900	HP280x11	260x12	280x13											
"Side 1"	38, 48	136,141	12.0	10.0	16.0	Multi spac.	600	900	HP260x10	200x9	260x13											
"LBHDD1-D2"	41, 42	137,138	13.0	11.5	17.0	Multi spac.	600	900	HP280x11	200x9	280x13											
"LBHDD2-D8"	50	142	11.0	9.0	15.0	650	600	900	HP260x10	160x7	260x13											
"Deck 2"	45, 46	139,140	6.0	4.5	10.0	640	600	900	HP100x7	100x6	100x8	380	100	400	6	5	10	150	50	250	10	5
"Deck 3 Inner + Outer"	55,56,57,58	143,144,145, 146	13 (11.0)	10.0	15.0	640	600	900	HP240x10	220x12	240x12	970	600	1200	10	5	15	150	50	600	30	5
"Side 2 + Side 3"	61,62	147,148	11.0	7.5	17.0	Multi spac.	400	700	HP140x8	120x6	160x8											
"Side 4"	74	153	9AH	7.0	12.0	700	400	700	HP140x7 AH	80x5	140x9											
"Shear Strake"	75, 76	154,155	9AH	F	X	Multi spac.	400	700	HP140x7 AH	F	X											
"Deck 4 Inner + Outer"	67,68,69,70	149,150,151, 152	9.5 AH	85	12.0	Multi spac.	400	700	HP260x10	240x12	260x13	1070	300	1100	10	5	12	150	25	200	30	5
"Deck 6 Inner + Outer"	82,83, 117,118	156,157,175, 176	7.0	50	12.0	Multi spac.	400	700	HP140x8	12087	140x9	880	500	1200	10	5	12	180	25	250	12	5
"Superstructure"	93,94,99, 100,105- 108,113-116	163-174	6.0	50	12.0	Multi spac.	600	900	HP 120x6	60x5	140x9	460.0	200.0	400.0	7.0	5.0	10.0	100.0	25.0	150.0	10.0	5.0

	0	-1	Plate thickness					DDC	0.00		Stiffeners HP						_	
Structure	Loft	Dialat	Itan	Plate tr	Min	Mar	Itom	BBS (100) Min	May It		D	Sumer	ners Hir	-	N	Any	
"Kad"	Leit	Ngii	Item	FU	IVIIII	IVER	nem	FU.	IVIII	IVEX II	an	г	0	P		1	/MAX	
"Bottom Inner"	<u> </u>							H	-		+			-		+		
"Bottom Outer"	-				-			-	-		+					+		
"Bilge"					C . 1					T	rans	verse	Fran	e				
"Center Line Bottom Girder"		Structu	re		Strake	s		H	IFW	r	TF	W		BFF	SFF		F	
"Inner Bottom Girder Down"				L	eft F	ight	Item	P0 1	Min	Max P) M	in Max	P0	Min M	fax P	0 Min	n Max	
"Inner Bottom Girder Linn"	Kæl																	
"Inner Bottom LBHD "	BottomI	nner			_	_	_	_	_	_	+				_		_	
"Inner Bottom"	Bottom C	ottomOuter ilge enter Line Botto							Ĩ			Lon	gitud	inal gire	ler			
"Deck 1 Inner"	Dilge Center Li			Strue	cture		SUAKES			H	GW	TG	W	BGF	1	GF		
"Deck 1 Outer"	Inner Bot	tom Gird					Left	Ri	ght	Item	Mir	Max	Min	Max M	in Ma	ıx Mir	Max	
"Side 1"	Inner Bot	tom Gird	"LBHD	D2-D3	"										1	-		
"LBHD D1-D2"	Inner Bot	tom LBF	"Deck 2					+		$ \rightarrow $		++	-	_	+			
"LBHD D2-D3"	Inner Bot	tom	"Deck 3	Inner I	ar 1"			-	\rightarrow		+	+	+	-		-		
"Deck 2"	Deck Ir	ner	"Deck 3	Inner 2	2			+	_			-	- '		-	-		
"Deck 3 Inner 1"	Side 1	AllCi	"Side 2	Guler				+	_			+ +	-		-	+	-	
"Deck 3 Inner 2"	LBHDD	1-D2	"Side 3"					+	_				-	-	-	+	-	
"Deck 3 Outer"	LBHDD	2-D3	"Side 4"					+				+		-	+	+	-	
"Side 2"	Deck 2		"Shear S	strake"		-		+							-	+	-	
"Side 3"	Deck 3 Ir	mer 1	"Deck 4	Inner 1	["			1							1		1	
"Side 4"	Deck 3 Ir	mer 2	"Deck 4	Inner 2	2")					
"Shear Strake"	Side 2	Aller	"Deck 4	Outer")					
"Deck 4 Inner 1"	Side 3		"Deck 6	Inner 1	["													
"Deck 4 Inner 2"	Side 4		"Deck 6	Inner 2	2"								1					
"Deck 4 Outer"	Shear Str	ake	"Deck 6	Outer"														
"Deck 6 Inner 1"	Deck 4 Ir	mer 1	"Deck 6	Strake'	"													

📙 Ph	ysical	l Syster	ns <mark>-</mark> Gl	obal C	Descri	iptors										
Con	trol		_													
Mod	lel:	Ropax 2	2			Enable		Globa	Descriptors (Control						
	0.000					🛃 Add / Re	emove Members	Name	Bottom o	outer						Apply
EI.	ype:	ur			*	🔽 Add / Be	emove Sustems	Num E	EIL	Mean	SDev.					04
0	Subsys	tems					Bows	6	45	4900016)					
۲	Global I	Descripto	rs			- Saminary	110113	T Us	e Svs.	eel	~					<u>C</u> ancel
Glob	al Desc	criptors			10		.			D				1.0.0		
No	Keel	Keel	Keel	Keel	Keel	Bottom	Bottom	Bottom	Bottom	Bottom	outer	Bottom	outer	outer	Bottom	girder down
	TPL	HSW	TSW	BSF	TSF	TPL	HSW	TSW	BSF	TSF	TPL	HS₩	TSW	BSF 🔽	TSF	TPL
1	12	245.86	10.5	45.49	33.64	12	245.86	10.5	45.49	33.64	12	245.86	10.5	BSF	^	12
2	12	245.86	10.5	45.49	33.64	12	245.86	10.5	45.49	33.64	12	245.86	10.5	HGW		12
3	12	245.86	10.5	45.49	33.64	12	245.86	10.5	45.49	33.64	12	245.86	10.5	BGF	1	12
4	13.5	263.01	11	49.04	35.99	13.5	263.01	11	49.04	35.99	13.5	263.01	11	TGF		13.5
5	13.5	263.01	11	49.04	35.99	13.5	263.01	11	49.04	35.99	13.5	263.01	11	TFW	~	13.5
6	13.5	263.01	11	49.04	35.99	13.5	263.01	11	49.04	35.99	13.5	263.01	11	49.04	35.99	13.5
7	16	263.01	11	49.04	35.99	16	263.01	11	49.04	35.99	16	263.01	11	49.04	35.99	16
8	16	263.01	11	49.04	35.99	16	263.01	11	49.04	35.99	16	263.01	11	49.04	35.99	16
9	13.5	263.01	11	49.04	35.99	13.5	263.01	11	49.04	35.99	13.5	263.01	11	49.04	35.99	13.5
10	13.5	263.01	11	49.04	35.99	13.5	263.01	11	49.04	35.99	13.5	263.01	11	49.04	35.99	13.5
11	13.5	263.01	11	49.04	35.99	13.5	263.01	11	49.04	35.99	13.5	263.01	11	49.04	35.99	13.5
12	12	245.86	10.5	45.49	33.64	12	245.86	10.5	45.49	33.64	12	245.86	10.5	45.49	33.64	12
13	12	245.86	10.5	45.49	33.64	12	245.86	10.5	45.49	33.64	12	245.86	10.5	45.49	33.64	12
14	12	245.86	10.5	45.49	33.64	12	245.86	10.5	45.49	33.64	12	245.86	10.5	45.49	33.64	12
15	10	193.81	9	36.84	25.19	10	193.81	9	36.84	25.19	10	193.81	9	36.84	25.19	10
16	10	193.81	9	36.84	25.19	10	193.81	9	36.84	25.19	10	193.81	9	36.84	25.19	10
17	8.5	193.77	10.25	37.81	25.48	8.5	193.77	10.25	37.81	25.48	8.5	193.77	10.25	37.81	25.48	8.5
18	13	124.27	7	24.53	14.73	13	124.27	7	24.53	14.73	13	124.27	7	24.53	14.73	13
19	13	640	10	0	0	13	640	10	0	0	13	640	10	0	0	13

📰 Initio	aOpt														
Subprob	olem: Blo	ck6			Model:	Ropax_22									
Physical	(Φ) Envir	ronment Resp	onse Adequa	y Reliabil	ity Quality		Properties								
Subsys	tems	1	Elements		Descriptors Out	puts		Selected		Value	Min	Max	Step	CV	^
Phy Su	ubsys	^	Se Name	^	Se Name		Details	Keel.TPL		16	14	18	0.5	0	_
Bottom	inner	~	🗹 GP4		GP4 BBS		💿 x 🔿 p	Bottom_inner.TPL		13.5	10.5	15 0.5		0	
Keel		~	GP5		Bottom inne	r TPI	OgOa	Bottom_outer.TPL		12	11	15	15 0.5		
Bottom	outer	~	GP6		Bottom inne	e HSW	\rightarrow	Inner_bottom_girder_	down.TPL	13	10	18	0.5	0	
Inner b	ottom girde	r 💌 🗐	GP9		Bottom inne	e TSW	$\rightarrow \rightarrow$	Inner_bottom_girder_	upp.TPL	PL 8.5		18	0.5	0	
Inner b	ottom girde	f 💌	🗹 GP10		Bottom inne	RSF		Inner_botom_LBHD.T	PL	10	10	15	0.5	0	
D1 inne	er	~	GP11		Bottom inne	# TSE	Hem	HFO_tank_top.TPL		11	11 11		0.5	0	
Inner b	ottom girde	r 💌	GP7		GRA HGW		RemAll	D1_inner.TPL		15	9.5	18	0.5	0	
D1 oute	D1 outer GP8							D1_outer.TPL		14	11	18	0.5	0	
								Side_D1_D2.TPL		13	10	16	0.5	0	~
Analysis	Methods S	election					Synthesis M	lethods Selection		Si	ubproblem	Sequence			
Physic	E	nvironment	Response	Adequacy	Reliability	Quality	Optimiser	Coordinator	Visualizer		Add Re	em nCj	Group		1
M	M	LC1	PS	BVSPL	Beta-Unz.	Weight	ES: MC/F	FE Model	DeView						
ma	ss	LC2	TS	BVFR	B&Bou Cost		MOGA	Attribute							
		LC3	LS	I_FAT	EI. FORM	Safety	CALMO	P Auto. Dec			InitDes	J			
		LC4		LLV		LUSA	MOPSO)			Decomp	J			
		LC5													
		LC6													
		LC7													
		LC8													
Subprobl	oproblem List														-
ID	Name Variables		1	Parameters	Attributes		Constraints	Optimiser	i.	ND	OM		Cre	ate	
1	Block3		161			8		1301	CALMOP					Mo	difu
3	Block4		98			8		1301	ZVGASolv	/er					y
4	Block6		98			8		1301	FFE					Rem	iove
_														R1	R2

Block 4: Extensive scantling optimization with reduced analysis block using initial designs generated in block 3.

Notes:

Design Variables includes Complex Design variables (HP profiles) (Num DV 161→98 + only standard HP profile used)

Constraints: BV Adequacy Criteria, Local Vibration of accommodation decks, Fatigue check of critical details, Maximal Weight

Objectives: Minimize Weight, Minimize Production Cost, Maximize Local Safety measure

Permited HP profiles in Bottom Inner Group (Complex variable *HPBotIn*)

HP -No	Rbr	Name	HW	TW	BF	TF
31	1	HP240x10	212.44	9.00	39.68	26.56
32	2	HP240x11	210.76	10.00	40.07	28.24
33	3	HP240x12	210.76	11.00	41.05	28.24
34	4	HP260x11	227.48	10.00	42.51	31.52
35	5	HP260x12	228.13	11.00	43.70	30.87
36	6	HP260x13	227.35	12.00	43.93	31.65
37	7	HP280x11	245.86	10.00	45.49	33.14
38	8	HP280x12	245.27	11.00	46.27	33.73
39	9	HP280x13	244.79	12.00	47.08	34.21
40	10	HP300x11	261.86	10.00	47.71	37.14
41	11	HP300x12	263.01	11.00	49.04	35.99
42	12	HP300x13	262.56	12.00	49.86	36.44
43	13	HP300x14	261.69	13.00	50.02	37.31
NDROVE Final Workshop, September 2009, Dubrovnik, Croatia						

Block 5: Subjective selection of certain number of Pareto designs based on multi-stakeholder preferences using Saaty's inter-attribute preferences and fuzzy membership grade functions for intra-attribute preferences. Distance L_p -norms are used for selection of 20-30 preferred designs.

This block was actually omitted because the increased speed of LUSA module (from ~2 min to ~5 sec), have enabled ultimate strength calculation for all obtained Pareto Solutions

Block 6: Additional calculation of **complex design attributes** (Ultimate strength) - Complete analysis of the Pareto designs generated in block 4.

University of Zagreb							
Design attributes for the final selection							
No 1 2 3 4 5 6 7 8 9	Acronym D_LWT DC_PROD DC_MAINT DC_FUEL D_EARN DP_DISM D_LCC gmean SAF	Description Delta Lightship weight Delta production cost Delta Maintenance cost Delta fuel cost Delta earning Delta dismantling Delta Life cycle cost Local safety measure Global (US) safety measure					
Note: D_LCC	E = D_EARN + DI	P_DISM- DC_FUEL- DC_MAINT-DC_PROD					

University of Zagreb

Weight and Production cost Reference Values

Design\Module	S1M1	S1M2	S1M3	S1M4	LWT
Reference Weight	1515000	988000	810000	961000	12800000
Optimal Generic Weight	1407000	879000	714000	961000	12487000
Number of Bays	14	10	8	12	
Module Length	39.2	28	22.4	33.6	
Reference Cost	2398309	1556679	1282264	1514138	
Optimal Generic Cost	2227340	1384940	1130292	1514138	

De	esign\Octopus	FR_129 Long	FR_129_Trans	FR_183 Long	FR_184_Trans
Oŗ	otimal Generic	96459.7	8831.643	94462.65	7429.2
	K_Octopus		13.447		8.700
Improve		IMPROVE Fina	al Workshop, Septemi	ber 2009, Dubrovnik	r, Croatia

University of Zagreb

Characteristics of the selected design according to LCC module (with respect to reference RoPax 22 Yard Design variant)

No	Acronym	Value	%
1	D_LWT	-504 t	-3.9 (gain)
2	DC_PROD	- 1.144·10 ⁶ €	-16.9
3	DC_MAINT	0.666 • 10 ⁶ €	17.6
4	DC FUEL	-9.086·10 ⁶ €	-4.0
5	DP_DISM	-0.2286·10 ⁶ €	-4.0
6	D LCC	8.376·10 ⁶ €	3.4 (gain)
	_		

* minus sign denotes reduction of physical value, ** **bolded** values denote aspired changes

STEP (3) : Problem Solution - RoPax Preliminary Design Phase

Preliminary design phase includes:

Block 8 - Final structural optimization based upon refined loads model and full ship 3D FEM model obtained by merging and refining ship generic model and bay models with optimal scantlings.

Block 9 - Final Analysis of the selected preferred design (from Block 8) including forced vibration analysis, building cost simulation, LCC analysis, final check of panel safety measures, ultimate strength and fatigue life of critical details.

University of Zagreb

CONCLUSIONS:

- decision support problem for ROPAX ship was formulated
- sets of design variables constraints and objectives were identified
- relative quality measures were used during generation of the non-dominated Pareto frontier
- novel design procedure was developed including coordinated cascade of structural models (generic, one bay and full ship model)

1st DESIGN STEP-COMPARISON BETWEEN SIX GENERIC MODELS:

- total mass of every model is successfully decreased for approximately 200 to 300 t (depending on a model).
- □ cost and VCG are successfully decreased.
- safety is increased due to smaller number of unsatisfied constraints and greater relative adequacy index.
- height of all model was increased for 300 mm due to greater height of frame web of decks 2 and 3.

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

2nd and 3rd DESIGN STEP:

After ULJANIK head designer detailed interactive analysis of the resultant Pareto frontier, in OCTOPUS Designer DeView the following conclusions have been made based on the IMPROVE LCC module:

The designs with low weight had simultaneously the low production cost and fuel cost while the maintenance cost is high

□ Influence of the maintenance cost on the total life cycle cost is significantly smaller then influence of a fuel cost

□ The preferred designs for both the shipyard and the ship-owner were actually the same: designs with the low weight offered smallest Production Cost (important for shipyard) and highest Profit (important for ship-owner).

University of Zagreb CONCLUSIONS

□ Relative quality measures (enabling correct ordering of design variants) were used as objectives in building of the preference structure needed in generation of the non-dominated Pareto frontier.

□ Interactivity in *DeView* module was instrumental for comfortable work with Yard head designer.

□ The OCTOPUS / MAESTRO decision support system included specially developed, fast and balanced collection of analysis and synthesis modules/methods. Part of those modules was only developed under this EU FP6 IMPROVE project, using full synergy of the consortium.

Product Presentation: Chemical Tanker (WP8)

Universities of Glasgow & Strathclyde, Glasgow, United Kingdom

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

Contents

- · The basic chemical tanker design and the ship yard's improvements
- Structural optimization (ConStruct)
 - Cost and Weight
 - Fatigue
 - Longitudinal Bulkhead optimization
 - Ultimate strength evaluation of the pareto solutions
- Transverse Bulkhead optimization (MAESTRO)
- Validation of the pareto optimum solutions
 - Full finite element model (linear and non-linear)
 - LBR-5 including life cycle cost evaluation
- · Stability and Seakeeping analysis
- Crash analysis
- Design selection and conlcusions

Improve

Owner's main design requirements

General design objectives:

- Maximize cargo volume per ship dimensions by reducing the void spaces, by using sandwich spaces instead of voids where possible and by reducing the internal subdivisions (non-cargo tanks) in number and in volume;
- Increase carrying capacity by reducing the steel mass;
- Minimize the cost of the main engine and machinery;
- Improve the vessels' operational performance and efficiency;
- Maximize the operational flexibility (no. of different types of cargo that can be carried simultaneously, no. of allowed loading conditions, efficient loading/discharging/stowage of cargo etc.);
- Structural Design Objectives:
 - Minimize the use of DUPLEX steel;
 - Decrease the cost of structural steel (including optimization of the geometry of corrugations);
 - Maximize structural safety by maximizing both global and local safety measures;
 - Minimize probability of the foreseeable structural failures by means of inspection focusing and repair prioritization; Maximize the fatigue life (FL > 45 years should be ensured);
- Operation, Maintenance and Repair Objectives:
 - Minimize maintenance and other operational costs by minimizing the need for tank inspection, by
 minimizing painted surface, especially in the ballast tanks and by maximizing the maintainability of the
 ship structure;
 - Maximize the reliability of the ship's machinery;

Kau Daufarmanaa		STAKEHOLDERS		YARD	PROTOTYPE CONCEPT	ASSOCIATED		IMPROVE PROJECT SHIP OWNER AND YARD EXPECTATIONS		GAIN (%) LEVEL 3 vs.
Indicators (KPI)	Shipyard SSN	Owner TPZ	SHIP LEVEL 1	REQUIREMENTS LEVEL 2a (GAIN : LEVEL 2a vs. LEVEL 1)	DESIGN VARIABLES	OBJECTIVES	INITIAL DESIGN LEVEL 2b (GAIN : LEVEL 2b vs. LEVEL 1)	LEVEL 3 (GAIN : LEVEL 3 vs. LEVEL 1)	LEVEL 2a or LEVEL 3 vs. LEVEL 2b *)	
1.0				SHIP F	UNCTIONS -PERFOR	RMANCES OTHER T	HEN COST & SA	FETY		
1.1					MASSES	, SPACES, CAPACIT	TIES			
	Hull structure mass [t]	н		10500		hull structure total	Minimize			3%
	Volume of ballast tanks [m ³]	MID	MID	16080		GA	Minimize	16080	16080	
ĺ	Number of ballast tanks [#]	MID	MID	21		GA	Minimize	17 (19 %)	17 (19 %)	
1.2						STRUCTURE				
	DUPLEX steel mass [t]	н		2900		scantlings, structural layout	Minimize			3 – 5 %
	Fatigue life [years]	MID	н	45	45	detail design		45	45	
	Use of MS (% of black steel mass)	н	н	34%		Material type	Maximize	60%		26%
	Painted surface [m ²]	н	н			structural layout, scantlings	Minimize			1.5%
	Longitudinal spacing [mm]	н		various	various	structural layout	optimized	optimized		

The interviews

- Two interviews with each stakeholder (owner and yard) Semi-structured interviews
- First interviews were performed to confirm the indicated design drivers, the KPIs and also get a better insight into what is expected from the improvements in hull structure through optimization.
- Second set of interviews followed after structural optimization was made, and after several alternatives were identified as the potential good compromises for both stakeholders.

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

The interviews (2)

1st interviews

Improv

- What is your role in the Shipyard? Could you please explain your duties and professional experiences? 1.
- 2. What is a 'good' ship for you?
- Observing the General Arrangement of the tanker, how would you describe it in short? 3 4.
- What would you indicate as its advantages and what as deficiencies? 5
- In previous activities you have indicated certain priorities which are indicated here in the APPENDIX. Do you consider that this design will fulfill these priorities? Please explain. 6.
- Have the main objectives and KPIs changed for you? 7.
- Have the main objectives and Aris changed for you? What technical details do you see relevant for fulfilling the objective of design? Which features in your opinion could be improved through optimization stud?? If I were to ask you to rank several design alternatives of this ship, do you think you would be able to do this? On what information or features would you base your ranking? 8.
- In your daily work how much are your decisions based on formalized information, and how much are they based on experience, hear say, experience of others, brainstorming and meetings? 9.
- Would you say that in your work (ship design) you make consistent decisions? If yes, please explain. If not, what contributes to the inconsistencies? 10

- 2nd interviews
- How fatigue, costs, and weight are preferred? 1
 - Is a unit of equivalent change dependent on the magnitude of the attribute a)
 - b)
 - Are they equally preferred even though the values of other attributes differ
 - Is a unit of equivalent change dependent on the value of other attributes C)
- Both owner and yard engage in value exchange, meaning that costs induced by the desire to 2 increase benefits will be shared.
 - We employ for this reason two realistic compensation factors p12 and p21 where first is the added ship price for the owner for the increased fatigue life, and it is based on the increased production costs for the yard. a)
 - The second factor, p21, is the penalty for the lost deadweight caused by the weight increase. b)
- The amount the owner is willing to pay to increase the fatigue life of this ship by 1year. 3. Let us consider three values for the moment: 0, 100k€ and 1M€. a)

 - b) Find the actual value

The findings – 1st interviews

- Owner does not take part in the conceptual structural design of the vessel, but is interested in her characteristics. Specifically, that the vessel in operation is safe, that there are no cracks in the structure and that there is no need for repainting.
- Other characteristics related to safety, e.g. ultimate strength is of no relevance to the owner, but it is covered with the previous statement that the vessel should be safe.
- The lightship mass of the vessel is also of no particular concern for the owner since vessels are usually purchased as existing projects which guarantees their capacity, or deadweight.
- Due to the requirements for cargo capacity and safety (chemicals), yard is specially interested in controlling the mass of the hull and in its fatigue characteristics to maintain a higher reliability of ship structure.
- Fatique is typically controlled trough design of structural details since loss of cargo capacity is not preferred
- Loosing 1000t of capacity for a vessel is huge!
- In case that owner is interested in increased vessel's structural safety, this is reflected in the ship price. The ship price is not standard but is based on the calculations founded on observed vessel design

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

<section-header><list-item><list-item><list-item><list-item><list-item>

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Basic design (SSN)

- <u>Alternative 2</u>
 - reduction of cargo tanks capacity to abt. 45 000 m3,
 - deleting of cofferdam bulkheads and replacing them by vertically corrugated bulkheads,
 - reduction of depth of the vessel to 15.0 m,
 - using of Duplex steel for center tanks only,
 - deleting of six deck tanks,
 - reduction of service speed to 15.0 kn,
 - deleting of shaft generator.

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

Basic design (SSN)

- Alternative 3
 - As Alternative 2 except the arrangement of Duplex tanks which are arranged in the middle part of the vessel / wing and center tanks /.
- Calculation of building cost done for 2007 condition shows that the most effective cost reduction is Alternative 3, and Shipyard decided to develop this design and optimize it using the IMPROVE tools

Basic design (SSN) The IMPROVE design is based on the following assumptions: specific gravity of sulfuric acid varies between abt.1.55 - 1.85 t/m3, capacity of Duplex stainless steel tanks should allow to carry acid with 50% of consumables, utilizing full deadweight of the vessel, - total number of Duplex stainless steel tanks to be eighteen with different capacities - Duplex stainless steel cargo tanks to be separated from the mild steel cargo tanks by cofferdams, longitudinal bulkheads to be vertically corrugated. transverse bulkheads to be vertically or horizontally corrugated · Connection between longitudinal vertically corrugated bulkheads and transverse horizontally corrugated bulkheads to be subject of FEM analyses propulsion system consists of slow speed ME driving directly FP propeller, service speed to be 15.0 kn. IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

EU FP6 project IMPROVE-Final Conference IMPROVE 2009, Dubrovnik, CROATIA, 17-19 Sept. 2009 339

• The relationship between the objectives was determinate using optimization method and "multiple run" approach. In this approach, several optimisation models with fixed and specified weight factors for objectives were run, and as results the Pareto surface was created including all potential candidates for optimum design alternative

Model		Cost	Weigth	Fatigue			
1 Tanker_II_C		1	0	0			
1 Tanker_II_W		0	1	0			
1 Tanker_II_CW		1	1	0			
1 Tanker_II_CWF		1	1	1			
1 Tanker_II_CF		1	0	1			
1 Tanker_II_WF		0	1	1			
<u>/</u>							
	MPROVE Fina	atia					

Structural optimization (ConStruct)

- The constraints of the optimization were strength criteria and production requirements according to shipyard specification
 - Production requirements were considered as minimum and maximum values of the design variable ranges
- The tanker structure included totally 22 different stiffened panels, which each have three design variables:
 - plate thickness of a panel
 - number of stiffeners of panels
 - stiffener type

mpre

 In the case of corrugated panel, panel 23, the stiffener was not applied, but shape and height (H) of corrugations was varied.

- The loading included the vertical bending moment as a global load and dynamic pressure loads as a local load. These loads are specified according to the Shipyard load manual and classification rules (DNV Classification notes No.30.7.)
- For quasi-static strength evaluation the vertical bending moments were
 - M_hog = 2 410 000 kNm
 - M_sag = + 2 933 000 kNm
- and for fatigue loading
 - M_hog = +1 593 000 kNm
 - M_sag = 1 708 600 kNm
- The fatigue loading corresponded to probability level 10⁻⁸, and Weibull shape parameter equal to 1.034 was applied describing the long-term stress distribution during ship life.
- The pressure includes the loads due to wave-induced external pressure and the deck load due to ship motions.
- The pressure loads were modeled as uniform pressure acting at each stiffened panel
- · Quasi-static and dynamic pressure loads were applied strength and fatigue analysis

- The IMPROVE Fatigue module is based on linear damage rule, long-term stress distribution defined by a Weibull distribution, and notch stress method
- Fatigue strength is described by one-slope S-N curve.
- The selection to design S-N curve is based on IIW recommendation (Hobbacher 2007)
- An additional safety factor equal to 1.6 is included.
- Thus, the parameters of S-N curve are
 - C = 5.75E+12 and m = 3, which equal to the classification guidelines with allowed value for accumulated damage ratio equal to D = 1 (DNV 2005).

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

Structural optimization (ConStruct)

- 1. The global response of the hull girder is evaluated based on wave loading and still water bending within existing design tools
- 2. The local nominal stress is evaluated in fatiguecritical locations
- 3. The notch stress is obtained based on the hot-spot and notch stress factors

The second and third level of the response analysis in carried out within the fatigue module using fast analytical formulae based on plate or beam theory

Improv

• Validation of the Fatigue module:

- The preliminary validation of the Fatigue module is done in Task 3.3, and it indicates good accuracy in nominal stress level
- Further validation of the Fatigue module is based on the stresses in hot-spot points of the selected fatigue critical structural details (end of stiffener at bottom and end of sloping plate):

EU FP6 project IMPROVE-Final Conference IMPROVE 2009, Dubrovnik, CROATIA, 17-19 Sept. 2009 348

Loading cases							
No	LC1(17) A2 Case 1	LC1(17) B Case 2	LC2(15) A1 Case 3	LC3(11) B Case 4	LC4(13) B Case 5	LC5 (6) A2 Case 6	
Loading case nr from loading manual	15	15	15	11	13	6	
	Still water shear force (sagging): 30656 kN Wave shear force (sagging): 10538 kN Still water bending moment (sagging): 641476 kNm Vertical wave bending moment (sagging): 967500 kNm	Still water shear force (sagging): 30656 kN Wave shear force (sagging): 10538 kN Still water bending moment (sagging): 641476 kNm Vertical wave bending moment (sagging): 967500 kNm	Still water shear force (hogging): 15206 kN Wave shear force (hogging): 10538 kN Still water bending moment (hogging): 1100376 kNm Vertical wave bending moment (hogging): 901875 kNm	Still water shear force (sagging): 1226 kN Wave shear force (sagging): 10538 kN Still water bending moment (sagging): 310016 kNm Vertical wave bending moment (sagging): 967500 kNm	Still water shear force (hogging): 8829 kN Wave shear force (hogging): 10538 kN Still water bending moment (hogging): 361646 kNm Vertical wave bending moment (hogging): 901875 kNm	Still water shear force (sagging): 70632 kN Wave shear force (sagging): 10538 kN Still water bending moment (sagging): 2408920 kNm Vertical wave bending moment (sagging): 967500 kNm	
Accelerations a_x, a_y, a_z		$\begin{array}{l} a_{x1} = 0.61 \ m/s^2 \ (z = 2.21 \\ m) \\ a_{x1} = 1.22 \ m/s^2 \ (z = 15.4 \\ m) \\ a_{z1} = 1.65 \ m/s^2 \end{array}$		$\begin{array}{l} a_{x1}\!=\!0.63\ m/s^2\ (z=2.21\\ m)\\ a_{x1}\!=\!1.25\ m/s^2\ (z=15.4\\ m)\\ a_{z1}\!=\!1.65\ m/s^2 \end{array}$	$\begin{array}{l} a_{x1}=0.62\ m/s^2\ (z=2.21\\ m)\\ a_{x1}=1.24\ m/s^2\ (z=15.4\\ m)\\ a_{z1}=1.65\ m/s^2 \end{array}$		
Reference value of the relative motion	h ₁ = 5.98 m	h ₁ = 2.99 m	h ₁ = 5.98 m	$h_1 = 2.99 \ m$	h ₁ = 2.99 m	$h_1 = 5.98 \ m$	
	Wave loads in load case A2	Wave loads in load case B	Wave loads in load case A1	Wave loads in load case B	Wave loads in load case B	Wave loads in load case A2	
nprove IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia							

Life cycle cost evaluation (ANAST/DN&T)

	Displacement constant	Deadweight constant
<u>Cost</u> of the periodic maintenance	- 1.7%	+ 0.1%
<u>Cost</u> of fuel consumption	0%	+1.0%
Exploitation <u>revenue</u>	- 1.9%	0%
Dismantling <u>revenue</u>	+ 6.3%	+ 6.3%
Total Life Cycle <u>Cost</u> (= 1 + 2 - 3 - 4)	- 2%	- 0.1%

The interviews (2)

- 1st interviews
- What is your role in the Shipyard? Could you please explain your duties and professional experiences? 1
- 2 What is a 'good' ship for you?
- Observing the General Arrangement of the tanker, how would you describe it in short? 3
- What would you indicate as its advantages and what as deficiencies? 4
- In previous activities you have indicated certain priorities which are indicated here in the APPENDIX. Do you consider that this design will fulfill these priorities? Please 5. explain.
- Have the main objectives and KPIs changed for you? 6. 7
- What technical details do you see relevant for fulfilling the objective of design? Which features in your opinion could be improved through optimization study? 8
- If I were to ask you to rank several design alternatives of this ship, do you think you would be able to do this? On what information or features would you base your ranking?
- Tailwing: In your daily work how much are your decisions based on formalized information, and how much are they based on experience, hear say, experience of others, brainstorming and meetings? 9.
- Would you say that in your work (ship design) you make consistent decisions? If yes, please explain. If not, what contributes to the inconsistencies? 10.

- 2nd interviews
- 1. How fatigue, costs, and weight are preferred? Is a unit of equivalent change dependent on the magnitude of the attribute a)
 - b)
 - Are they equally preferred even though the values of other attributes differ
 - Is a unit of equivalent change dependent on the C) value of other attributes
- Both owner and yard engage in value exchange, meaning that costs induced by the desire to increase benefits will be shared. 2
 - We employ for this reason two realistic compensation factors p12 and p21 where first is the added ship price for the owner for the increased fatigue life, and it is based on the increased production costs for the yard. a)
 - b) The second factor, p21, is the penalty for the lost deadweight caused by the weight increase. The amount the owner is willing to pay to increase the fatigue life of this ship by 1year.
 - - Let us consider three values for the moment: 0, 100k€ and 1M€. a)
 - b) Find the actual value

IMPROVE Final Workshop, September 2009, Dubrovnik, Croatia

3

The findings – 1st interviews

- Owner does not take part in the conceptual structural design of the vessel, but is interested in her characteristics. Specifically, that the vessel in operation is safe, that there are no cracks in the structure and that there is no need for repainting.
- Other characteristics related to safety, e.g. ultimate strength is of no relevance to the owner, but it is covered with the previous statement that the vessel should be safe.
- The lightship mass of the vessel is also of no particular concern for the owner since vessels are usually purchased as existing projects which guarantees their capacity, or deadweight.
- Due to the requirements for cargo capacity and safety (chemicals), yard is specially interested in controlling the mass of the hull and in its fatigue characteristics to maintain a higher reliability of ship structure.
- Fatigue is typically controlled trough design of structural details since loss of cargo capacity is not preferred
- Loosing 1000t of capacity for a vessel is huge!
- In case that owner is interested in increased vessel's structural safety, this is reflected in the ship price. The ship price is not standard but is based on the calculations founded on observed vessel design

The findings – 2nd interviews

- Owner expresses no interest to increase the fatigue life beyond required minimum, set by class, since it becomes difficult to find cargo for the vessel older than 15 years.
- On the other hand, it makes sense to increase the reliability of the vessel, but the vessel's
 capacity should not be sacrificed, and it should not cost any significant amount. The re-design
 should concentrate on the structural details, and on painting.
- The yard mentions, from the experience of dealings with chemical tanker owners, that the fatigue life of this chemical tanker should be 30 years (40 years is too long, and 25 too short). There is a special class for a 30-year fatigue life vessel.
- · Yard transfers all the costs of increasing fatigue life to the owner

mprov

- Chemical tanker owners are in principle not selling for the reasons to avoid creation of competition. Thus they maintain and use their vessels until the scraping
- Yard estimates the upper value of investment into one year of fatigue life to be 100 000 EURO.

Stakeholder utilities

- Three attributes are considered here: the mass of hull, the costs required to produce it and the estimated fatigue life
 - The yard:

Improv

- Minimize production costs, but with intention that all extra production costs to that of the standard minimum mass design are transferred to the owner
- Do not significantly decrease the cargo capacity
 The owner:
 - Increase fatigue life
 - Do not significantly decrease the cargo capacity
- Both owner and yard engage in value exchange, meaning that costs induced by the desire to increase benefits will be shared.
- We employ two probabilities p₁₂ and p₂₁
 - First is the chance that the owner will accept the added ship price for the increased fatigue life, and it is based on the increased production costs of the yard.
 - The second p₂₁ is the chance that the yard accepts the penalties for the lost deadweight caused by the mass increase.

 $u_{j}(\mathbf{x}) = k_{\text{financial}, j} \cdot r_{\text{financial}, j}(\mathbf{x}) + k_{\text{fatigue}, j} \cdot r_{\text{fatigue}, j}(\mathbf{x})$

$$r_{financial, YARD}(\mathbf{x}) = \left\langle \left\langle \left(1 - p_{12}\right) \Delta P_{production} - p_{21} \Delta P_{capacity loss} \right\rangle \right\rangle$$

$$r_{fatigue, YARD}(\mathbf{x}) = \langle \langle \Delta FL \rangle \rangle$$

$$r_{financial,OWNER}(\mathbf{x}) = \left\langle \left\langle p_{12} \Delta P_{production} - (1 - p_{21}) \Delta P_{capacity loss} \right\rangle \right\rangle$$

$$r_{fatigue,OWNER}(\mathbf{x}) = \langle \langle \Delta FL \rangle \rangle$$

Design	Scaling constants	YARD	OWNERS		
scenario	-				
1	k financial	0.644	0.730		
	k fatigue	0.356	0.270		
2	k financial	0.847	0.787		
	k fatigue	0.153	0.213		
3	k financial	0.99	1		
	k fatigue	0.01	0		

Proposed alternatives									
• Fa im	 Fatigue life is not important 				•	 High and low value of fatigue life 			
 Design alternative '48' Low weight design No additional investments Some financial gains for both stakeholders due to production cost reduction Present day optimized solution Design alternative '4' 6.75 extra years of fatigue life abt. 700 tons of extra steel 									
Design	Value of 1 year	-	~ "			Added		Yard's	Owner's
scenario	of fatigue life	DA	Quality	P12	P21	fatigue life	Deadweight	financial loss [M€]	financial loss [M€]
1	1000	4	0.28	0	1	6.75	684	0	6.4
2	100	4	0.45	Õ	1	6.75	684	0	6.4
3	0	48	0	0	1	0	0	-0.05	0.1890
Improve		IMPRO	OVE Final V	Vorksho	p. Septem	ber 2009, Dul	provnik, Croatia		

EU FP6 project IMPROVE-Final Conference IMPROVE 2009, Dubrovnik, CROATIA, 17-19 Sept. 2009 371

